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Behavior of a rational recursive sequences

Elsayed M. Mohamed Elsayed

Abstract. We obtain in this paper the solutions of the difference equa-

tions
Tn—7

+1+ In—1Tn—-3TLn—-5Ln-7
where the initial conditions are arbitrary nonzero real numbers.
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Tnt1 = , n=0,1,..,

1. Introduction
In this paper we obtain the solutions of the following recursive sequences

Tn—7
, n=0,1,.. 1.1
+lt+ o, 1Tn—3Tp—5Tn_7 ’ (1

Tnt+1 =

where the initial conditions are arbitrary nonzero real numbers.

Recently there has been a great interest in studying the qualitative
properties of rational difference equations. For the systematical studies of
rational and nonrational difference equations, one can refer to the papers
[1-41] and references therein.

The study of rational difference equations of order greater than one is
quite challenging and rewarding because some prototypes for the development
of the basic theory of the global behavior of nonlinear difference equations of
order greater than one come from the results for rational difference equations.
However, there have not been any effective general methods to deal with the
global behavior of rational difference equations of order greater than one so
far. Therefore, the study of rational difference equations of order greater than
one is worth further consideration.

Alogeili [5] has obtained the solutions of the difference equation

Tn—1

Tpyp = ———.
4 — TpTn—1
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Cinar [7]-[9] investigated the solutions of the following difference equations

Tn—1 x o Tn—1 x o Tnp—1
1— 1= .
’ e n 1 + bxnxn—l

Elabbasy et al. [11]-[12] investigated the global stability, periodicity character
and gave the solution of special case of the following recursive sequences

Tnt+1 =

1+axprn_1 —1+ar,Tp—1 ’

bxn dxn—lxn—k
———, ITpt1=— +ta
CTy — dTp—1 CTyp—s — b

Tn+1 = QTp —
Elabbasy et al. [15] gave the solution of the following difference equations
Tn—7
+1+ Tp—3Ln—7 '

Karatas et al. [26] get the form of the solution of the difference equation

Tnt+1 =

Tpy1 = ——n=8
1+ 2,—2Tn_5
Simsek et al. [33] obtained the solution of the difference equation
Tn—3
1+ ITn—1 ’
Here, we recall some notations and results which will be useful in our inves-
tigation.
Let I be some interval of real numbers and let

[ S

Tn41 =

be a continuously differentiable function. Then for every set of initial condi-
tions x_, T_k+1,..., 20 € I, the difference equation

Tot1 = [(Tns Tn—1,s o, Tn—k), n=0,1,.., (1.2)
has a unique solution {x,}5° . [29].

Definition 1.1. (Equilibrium Point)

A point T € I is called an equilibrium point of Eq. (1.2) if

T =f(T,T,...T).

That is, x, =T for n > 0, is a solution of Eq. (1.2), or equivalently, T is a
fized point of f.
Definition 1.2. (Stability)

(i) The equilibrium point T of Eq. (1.2) is locally stable if for every
€ >0, there exists 6 >0 such that for all x_p,x_k41,...,2-1,x0 € I with

|x—k — |+ |2—p41 — T+ ... + |0 — T| <6,
we have
|z — T <€  forall n>—k.

(ii) The equilibrium point T of Eq. (1.2) is locally asymptotically stable if
T is locally stable solution of Fq. (1.2) and there exists v > 0, such that for
all T_p, X _jy1y ey x—1,20 € I with

|e—k — |+ |2—pt1 — T+ ... + |20 — T| < 7,



Behavior of a rational recursive sequences 29

we have

lim xz, =7.
n—o0

(iti) The equilibrium point T of Eq. (1.2) is global attractor if for all
T ks Tftly -y T—1,Z0 € I, we have

lim =z, =7.
n—oo

(iv) The equilibrium point T of Eq. (1.2) is globally asymptotically stable if
T is locally stable, and T is also a global attractor of Eq. (1.2).

(v) The equilibrium point T of Eq. (1.2) is unstable if T is not locally
stable.

The linearized equation of Eq. (1.2) about the equilibrium Z is the linear
difference equation

k
of(z,T,...,T)
Yn4+1 = Z Tyn_i.
i=0 n
Theorem 1.3. [28] Assume that p,q € R and k € {0,1,2,...}. Then
Il +lal <1,
s a sufficient condition for the asymptotic stability of the difference equation

Tn+1 + pTy + qTp—f = 0; n= 0; 17 e

Remark 1.4. Theorem 1.3 can be easily extended to a general linear equations
of the form

Ttk + P1Tntk—1 + . T DxTn =0, n=0,1,.., (1.3)

where p1,p2, ...,k € R and k € {1,2,...}. Then Eq. (1.8) is asymptotically
stable provided that

k
Z|Pi| <L
i=1

Definition 1.5. (Periodicity)
A sequence {x,}5° _, is said to be periodic with period p if Tyyp =
Ty for allm > —k.

LTn—7
14+2p - 1Tn—3Tn—5Tn—7

2. On the Difference Equation z,,,; =

In this section we give a specific form of the solutions of the difference equa-
tion

Tn—7
1+ xn,1$n73$n75$n,7’

Tnt+1 = n=0,1,..., (21)

where the initial conditions are arbitrary nonzero positive real numbers.
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Theorem 2.1. Let {x,}22 _, be a solution of Eq. (2.1). Then for n=0,1, ...

n—1
h T1 (1 + 4ibdfh)
=0

T8n—7 = 1 )

[T (1 + (4i + 1)bdfh)

=0

n—1
g H (1+ 4iaceg)

T8n—6 = n—1 )
IT (1 + (4é + 1)aceg)
=0

n—1
f (14 (4¢ + 1)bdfh)
I8gn—5 = n7—:10 ’
(14 (4 + 2)bdfh)
] (1 + (4i 4 1)aceg)
T8n—a4 = nz_zl() ’
IT (14 (4i + 2)aceg)
=0
where x_7 = h, x_
-1
b, r_og=a, HAi:]-~
i=0

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our

assumption holds for n — 1. That is;

n—2
h T (1+ 4ibdfh)
T8n—15 = n—2o =0 ;

T (1+ (4 + 1)bdfh)
1=0

n—2
g [T (1 + 4iaceg)
Ten—14 = 5 = )

£ (1 + (40 + 1)barh)
=0
n—2

T8n—13 = ;

IT 1+ (41 + 2)bdfh)

:13 T

(1 + (4i + 1)aceg)

)

Il
=]

T8n—12 =

|
)

n

(14 (49 4+ 2)aceg)

s
Il
o

dTT (1 + (4 + 2)bdfh)

=0

T8n—-3 = 1 ’

n

T1 (1 + (4i + 3)bdfh)

=0

céljl (1 + (4i + 2)aceg)

Tgn—2 = ’

nljol (14 (43 + 3)aceg)
b T (1 + (43 + 3)bdfh)
0

=

Tgn—1 =

n—1 ’

1:[ (1+ (49 + 4)bdf h)
n]f[ol (1+ (44 + 3)aceg)
Ign = n:l )

];[0 (1+ (4i + 4)aceg)

<.

6 = 9, x75:fa T4 = €, fE,gZd, T2 =C T-1 =

AT (1 + (4 + 2)bafh)

T8n—11 = ni_:; s
T (1+ (4i + 3)bdfh)
=0
n—2

(14 (43 + 2)aceg)

T8n—10 = nlj; )

(1+ (49 + 3)aceg)
=0
b T (14 (4 + 3)bdfh)
T8n—9 = nl_:20
TT (1 + (4i + 4)bdfh)
i=0
1:[ (14 (47 + 3)aceg)
Tgn—8 = =0

no

n]:[ (1+ (4i +4)aceg) .

1=

[}
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Now, it follows from Eq. (2.1) that

T8n—15

T8n—7 =
1+ 28pn—9T8n—11T8n—13T8n—15

n—2
h T (1+4ibdfh)
=0

71:_[5(1+(4i+1)bdfh)

b T (14 (4i+3)bdfh) d T[ (1+(4i+2)bdfh) £ L (4+(4i+1)bdfh) h TI (1-+4ibdfh)
=0 i=0 =0 =0

1 + n— n— n— n—
H2(1+(4i+4)bdfh) H2(1+(4i+3)bdfh) H2(1+(4i+2)bdfh) H2(1+(4i+1)bdfh)
=0 1=0 =0 1=0

n—2

R T] (1 + 4ibdfh) 1
_ i=0
T (1 + (45 + Dparn) | 1+ S— T (1 + dibarh)
=0 T (1+ (4i + 4)bdfh) =°
=0
n—2

LA dibdrh) 1 (1+ (4n — 4)bdfh)
= bdrh { (11 (4n — 4)bdfh) }

130 (1+ (4i+ 1)bdfh) \ 1+ (1 + (4n — 4)bdfh)

n—2
W LD Aibdrh) ( 1+ (4n — 4)bdfh )
1+

(s (4 s o (4n — 4)bdfh + bdfh
=0

n—2
_ b 1T (1 4ibdfh) (1+(4n—4)bdfh)

anQ (1 + (4i 4 1)bdfh) 1+ (4n — 3)bdfh
=0

Hence, we have
n—1
h TT (14 4ibdfh)
T8n—7 = =0 .

n—1

IT (1 + (49 4+ 1)bdfh)

i=0
Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 2.2. Eq. (2.1) has a unique equilibrium point which is the number
zero and this equilibrium point is not locally asymptotically stable.

Proof. For the equilibrium points of Eq. (2.1), we can write
z

T= .
1+ 7
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Then
T4+7° =1,
or
z° = 0.

Thus the equilibrium point of Eq. (2.1) is Z = 0. Let f : (0,00)* — (0, 00)
be a function defined by

u
’ at =7
flw,v,w,t) 1+ wowt
Therefore it follows that
1 —u2wt
U y Uy at = T 9 v y Uy at = T N9
Fulu,v,w,4) (1 + wowt)? folu,v,w:1) (1 + wowt)?
—u2ut —uow
0 s Uy at = T N9 s Uy 7t = T o
Fuolu, v, ) (1 4 wowt)? filw, v, w, ) (1 4+ wvwt)?

we see that
fu(j,f7f,f):1, fv(j,f,f,fx):o, ,fw(jajvaf):oa ff(fajajvf)zo
The proof follows by using Theorem 1.3.

Theorem 2.3. Every positive solution of Eq. (2.1) is bounded and lim x,, = 0.

n—oo

Proof. Tt follows from Eq. (2.1) that

Tp—7
Tp+1 = - S Tn—7-
14+ Tp—1Tp—3Tn—5Tn_7

Then the subsequences {Zgn—7}152 o, {Tsn—6}20, {Tsn—51""0; {Tsn-4}20,
{Zsn—3}52 0, {Tsn—2120, {Z8n-1}2y, {zsn}2, are decreasing and so are
bounded from above by M = max{z_7,2_¢,Z_5,C_4,2_3,T_2,T_1,T0}.

Numerical examples

For confirming the results of this section, we consider numerical examples
which represent different types of solutions to Eq. (2.1).

Example 2.4. Consider x—7 = 2, x—¢ = 7, x—5 = 3, x—4 = 2, x_3 =
6, Tr—o2 = 9, r—1 = 5, o = 14. See Fig. 1.
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plot of x(n+1)= x(n=7)/(1+x(n-1)x(n-3)x(n-5)x(n-7))

14 T T T T T T T T T

12F 1

x(n)

Figure 1.

Example 2.5. See Fig. 2, since x_7 = 7, x—¢ = b, x_5 = 0.3, ©_4 =
0.2, Tr—3 = 4, T—_o = 1, r—1 = 15, o = 2.

plot of x(n+1)= X(N=7)/(L+x(n-1)x(N=3)x(N=5)X(n~7))

7, T T T T T T T T T

o . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
n

Figure 2.

LTn—7
1-zp1Tn—3Tn—5Tn—7

3. On the Difference Equation =, ,; =

In this section we give a specific form of the solutions of the difference equa-
tion
Tn—7

Tnt+1 = n=0,1,..., (31)

)
1- Tn—-1Tn—-3Ln—5Tn-7
where the initial conditions are arbitrary nonzero real numbers.
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Theorem 3.1. Let {x,}2° _, be a solution of Eq. (3.1). Then for n = 0,1,

—1

d'T[ (1 — (4 + 2)bdfh)

n'TT (1 — dibdfh)

Ten—7 = 1 =0 ; Ign—-3 = ni_zl() )
T] (1 — (4i + 1)bdfh) TT (1 — (4i + 3)bdfh)
i=0 i=0

n—1 n—1
g [1 (1 —4iaceg) ¢ [T (1= (4i + 2)aceg)
T8n—6 = n_1 =0 ) T8n—2 = niflo ;
1T (1 — (4é + 1)aceg) 1T (1 — (4i+ 3)aceg)
i=0

=0

b ’fﬁl (1— (47 + 3)bdfh)
nl—zlo ’
II
1=0

f nf[l (1 — (4i + 1)bdfh)

I8n—5 = nl_lo ’ Ign—1 =
TT (1 — (4i + 2)bdfh) (1— (4i + 4)bdfh)
i=0
n—1 n—1
e [T (1 — (4i + 1)aceg) a [T (1 —(4i+ 3)aceg)
T8n—4 = nz:O ) Tgn = nljlo )
IT (1 = (4é 4+ 4)aceg)
i=0

]:[: (1 = (4i + 2)aceg)

where jbdfh # 1, jaceg # 1 for j =1,2,3, ... .

Proof. 1t is similar to the proof of Theorem 2.1 and will be omitted.

Theorem 3.2. Eq. (3.1) has a unique equilibrium point which is the number
zero and this equilibrium point is not locally asymptotically stable.

Numerical examples

Example 3.3. Consider x_7 =7, ©_¢ =5, x5 = 3, x4 = 2, x_3 = 4,
r_o=1,x_1 =11, zg = 2. See Fig. 3.
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plot of x(n+1)= x(n-7)/(1-x(n-1)x(n-3)x(n-5)x(n-7))

Figure 3.

Example 3.4. See Fig. 4, since v—7 = 0.7, z_¢ = 0.5, x_5 = 0.3, x_4 =
0.2, Xr_3 = 04, T_9 = 05, r_1 = 01, o — 1.2.

plot of x(n+1)= x(n=7)/(1-x(n-1)x(n-3)x(n-5)x(n-7))

x(n)

0 10 20 30 40 50 60 70 80 90 100
n

Figure 4.

Tn—17
—14+Tn—1Tn—3Tn—5Tn—7

4. On the Difference Equation z,,; =

In this section we investigate the solutions of the following difference equation
LTn—7
-1+ Tn-1Tn—3Tn—5Tn-7

Tp41 = , n=0,1,.., (4.1)
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where the initial conditions are arbitrary nonzero real numbers with
T_7x_5x_3x_1 # 1, x_gxr_gyx_oxg # 1.

Theorem 4.1. Let {x,}> _- be a solution of Eq. (4.1). Then Eq. (4.1) has
unbounded solutions and for n = 0,1, ...

h d
Ten—7 = m7 T8n—3 = m,
T -9 T - ¢
81767 (21 + aceg)™’ 81727 (21 + aceg)™’

T8n—5 = f (_1 + bdfh)n ’ Tgn-1 =10 (_]— + bdfh)n ’
Tgn—a =€ (=1 +aceg)", rsn = a (=1 +aceg)” .

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n — 1. That is;

h d

Tgp_15 = ————————7, Tgp-11 = ——————T>
B R G B AT
-9 - ¢
Ten—14 = (=1 + aceg)—1’ F8n—10 (=14 aceg)»=1’

Tgn-13 = f (=1 +bdfh)" ™", @gn_o=b(—1+bdfh)" ",
Tgn_12 = € (—1 + aceg)" ", Tgn_g =a(—1+ aceg)"i1 }

Now, it follows from Eq. (4.1) that

T8n—15
Tgn—7 =
1+ 28— 9%8n—11T8n—13T8n—15
S
_ (=1 +bdfh)" "
a ne d n— h
~14b (=1 +bdfh)" ™ ——— e f (~1 + bdf )" —————
(—1+ bdfh) (—1+ bdfh)
_ kR

(=14 bdfR)" !

 —1+bdfh
Hence, we have

o h
T (g bdfn) T
Similarly
T8n—12
T8n—4 =
1+ 25n—628n—8%Tsn—10L8n—12
B e (=1 + aceg)" ™"
B T — (=1 +aceg)" ! S — (=1 + aceg)" "

(=1 + aceg)” (=1 + aceg)n—1!
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e(=1+aceg)" " [—1+aceg
14+ aceg —1+4+aceg)’
(—1 + aceg)

Hence, we have

n

Tgp—4 = e(—1+ aceg)

Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 4.2. Eq. ({.1) has three equilibrium points which are 0,4+v/2 and
these equilibrium points are not locally asymptotically stable.

Proof. The proof as in Theorem 2.2.

Theorem 4.3. Eq. (4.1) has a periodic solutions of period eight iff aceg =
bdfh = 2 and will be take the form {h,g, f,e,d,c,b,a,h,g, f,e,d,c,b,a,...}.

Proof. First suppose that there exists a prime period eight solution
h7g7f7e7d7C7b7a7h7g7f7e7d7c7b7a7"'7

of Eq. (4.1), we see from Eq. (4.1) that

L O —
S Cireany” YT T
— 9 — c.
9= (=1 + aceg)™’ ‘= (—1 + aceg)™’
F=f(=14bdf)", b=b(—1+bdfh)",
=e(=1+aceg)”, a=a(—1+aceg)".
or
(=1+bdfh)" =1, (=14 aceg)” = 1.
Then

bdfh =2, aceg = 2.
Second suppose aceg = 2, bdfh = 2. Then we see from Eq. (4.1) that

Tgn—7 =h, Ten—6 =g, Tan-5 = f, Tsn—a=e€, Tgpn—3=4d,

T8n—2 =C, Tgn—1 =0, Tgn = a.

Thus we have a period eight solution and the proof is complete.

Numerical examples

Example 4.4. We consider x_7 =7, v_¢ =8, x_5 =11, x_4y =2, v_3 =
4, x_o =1, x_1 =3, ©g =9. See Fig. 5.
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X 10° plot of x(n+1)= X(n=7)/(~1+x(n-1)x(N-3)x(n-5)x(N-7))
10 T T T T T T T
ok
ob
A4
ok

s

4
b
b
i+

0 2 4 6 8 10 12 14 16

n
Figure 5.

Example 4.5. See Fig. 6, since v—7 = 7, ©v_¢ = 0.5, x_5 = 10, xz_4 =
12, r—3 = 04, Tr—o = 1/12, r—1 = 1/14, o = 4.

plot of x(n+1)= x(n=7)/(-1+x(n-1)x(n-3)x(n-5)x(n-7))
12 T T T T

x(n)
o

0 10 20 30 40 50 60
n

Figure 6.

Tn—17
—1-ZTn-1Tn—3Tn—5Tn—7

5. On the Difference Equation =, ,; =

In this section we investigate the solutions of the following difference equation
LTn—7

Tn+1 = s n=0,1,..., (51)

—-1- Tn—-1Tn—3Tn—5Tn-7
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where the initial conditions are arbitrary nonzero real numbers with
T_5r_3x_1 # —1, x_4x_oxg # —1.

Theorem 5.1. Let {x,}° - be a solution of Eq. (5.1). Then Eq. (5.1) has
unbounded solutions and for n = 0,1, ...

o ewth (1

8n—7 — (1 -I-bdfh)n’ 8n—3 — (1 I bdfh)na
_ (=D"g _ (="

T8n—6 = (l—l—aceg)”’ T8n—2 = (1—|—aceg)"’

Tsns = f(=1)" (1 +bdfh)",  @sn_1 =b(=1)" (1+bdfh)",
Tsna = e(—1)" (1 +aceq)”,  wgn=a(~1)" (1 + aceg)".

Theorem 5.2. Fq. (5.1) has one equilibrium point which is number zero and
this equilibrium point is not locally asymptotically stable.

Theorem 5.3. Eq. (5.1) has a periodic solutions of period eight iff aceg =
bdfh = —2 and will be take the form {h,g, f,e,d,c,b,a,h,g, f,e,d,c,b,a,...}.

Numerical examples

Example 5.4. Fig. 7 shows the solution when x_7 = =7, x_¢ = 8, x_5 =
11, T—yg = 2, r—3 = —4, T—2 = 1, r—1 = 3, o = -9.

x10° plot of x(n+1)= x(n=7)/(-1-x(n-1)x(n-3)x(n-5)x(n-7))

x(n)
IS

0 2 4 6 8 10 12 14 16 18 20
n

Figure 7.

Example 5.5. See Fig. 8, since x_7 = =7, x_¢ = 10, x_5 = 30, z_4 =
2, x_3=—-04, x_9=0.6, z_1 =—1/42, 20 =—1/6
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plot of x(n+1)= x(n=7)/(-1-x(n-1)x(n-3)x(n-5)x(n-7))

L L L L L L L L L
5 10 15 20 25 30 35 40 45 50
n

Figure 8.
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