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ON S-DISCONNECTED SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. The structure of the class of S-disconnected spaces is stud-

ied. Two types of S-disconnectedness of topological spaces are introduced.

Properties of these spaces in the context of connectedness of spaces are

investigated.

1. Introduction

A certain class of non-Hausdorff spaces, called irreducible spaces, was intro-
duced by MacDonald [18]. Pipitone and Russo [27] have defined S-connected spaces.
In [34] Thompson proved that these two notions are equivalent. It should be also no-
ticed that Levine has defined the so-called D-spaces [16], which are irreducible spaces,
in fact. On the other hand, the notion of hyperconnected spaces, due to Steen and
Seebach [32] is equivalent to the notion of D-spaces (Sharma [29]). Some properties
of hyperconnected spaces were investigated by Noiri [22].

2. Preliminaries

Throughout the present paper (X, τ) and (Y, σ) denote topological spaces on
which no separation axioms are assumed. The closure (resp. interior) in (X, τ) of a
subset S of (X, τ) will be denoted by cl (S) (resp. int (S)). The set S is said to be
regular open (resp. regular closed) in (X, τ), if S = int (cl (S)) (resp. S = cl (int (S)).
A subset S of X is said to be semi-open [15] (resp. α-open [21]) if S ⊂ cl (int (S)) (resp.
S ⊂ int (cl (int (S)))). Levine defined [15] S as semi-open if there exists an open subset
G of (X, τ) such that G ⊂ S ⊂ cl (G). The complement of a semi-open set is said to
be semi-closed [4]. The semi-closure of a subset S of (X, τ) [4], denoted by scl (S), is
defined as an intersection of all semi-closed sets of (X, τ) containing S. The set scl (S)
is semi-closed. The semi-interior of S in (X, τ) [4], denoted by sint (S), is defined as
a union of all semi-open subsets A of (X, τ) such that A ⊂ S. It is well known that
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X \ sint (A) = scl (X \A) and X \ scl (A) = sint (X \A) [4, Theorem 1.6]. The family
of all semi-open (resp. semi-closed; α-open; closed; regular open) subsets of (X, τ)
we denote by SO (X, τ) (resp. SC (X, τ); τα; c (τ); RO (X, τ)). The family τα forms
a topology on X, different from τ , in general. The following inclusions hold in each
(X, τ): τ ⊂ τα ⊂ SO (X, τ). The inclusion τ ⊂ SO (X, τ) implies c (τ) ⊂ SC (X, τ).
The reverses of these inclusions are not necessarily true, in general. A topological
space (X, τ) is said to be semi-connected (briefly: S-connected), if X is not the
union of two disjoint nonempty semi-open subsets of (X, τ). In the opposite case
(X, τ) is called semi-disconnected (briefly: S-disconnected). Pipitone and Russo [27,
Esempio 3.3, 11, p. 30] showed that connectedness does not imply S-connectedness,
in general. A topological space (X, τ) is said to be extremally disconnected (briefly:
e.d.), if cl (G) ∈ τ for each G ∈ τ .

3. p. S-disconnectedness and s.p. S-disconnectedness

In 1983 Janković proved the following characterization of e.d. spaces: an
(X, τ) is e.d. if and only if SO (X, τ) = τα [13, Theorem 2.9(f)]. Later (in 1984),
Reilly and Vamanamurthy showed that (X, τ) is disconnected if and only if (X, τα)
is disconnected [28, Theorem 2]. These two theorems give a motivation to investigate
S-disconnectedness of not e.d. spaces from the connectedness point of view. For
e.d. spaces we have what follows: an (X, τ) is disconnected if and only if it is S-
disconnected [12, Theorem 3.2(2)].

Definition 3.1. A not e.d. topological space (X, τ) is called to be properly S-

disconnected (briefly: p. S-disc.), if there exist A,U ⊂ X such that A ∈ SO (X, τ)\
τα, U ∈ τα, U ∪A = X, and U ∩A = ∅.

Theorem 3.2. Let (X, τ) be a topological space. The following are equivalent:

1. (X, τ) is p. S-disc.
2. There exist A,U ⊂ X such that A ∈ SO (X, τ) \ τα, U ∈ RO (X, τ),

U ∪A = X, and U ∩A = ∅.
3. There exist A,U ⊂ X such that A ∈ SO (X, τ)\τ , U ∈ RO (X, τ), U∪A =

X, and U ∩A = ∅.
4. There exist A,U ⊂ X such that A ∈ SO (X, τ) \ τα, U ∈ τ , U ∪ A = X,

and U ∩A = ∅.
5. There exist A,U ⊂ X such that A ∈ SO (X, τ)\RO (X, τ), U ∈ RO (X, τ),

U ∪A = X, and U ∩A = ∅.
6. There exist A,U ⊂ X such that A ∈ SO (X, τ) \ τ , U ∈ τ , U ∪ A = X,

and U ∩A = ∅.
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Proof. Implications: (2)⇒(3), (4)⇒(1), (3)⇒(5), (3)⇒(6) are obvious.
(1)⇒(2). By hypothesis there exist sets A ∈ SO (X, τ) \ τα, U ∈ τα such that
U∪A = X and U∩A = ∅. (2) follows from [9, Lemma 2.2], because U ∈ τα∩SC (X, τ).
(3)⇒(4). Let A,U ⊂ X be such that A ∈ SO (X, τ) \ τ , U ∈ RO (X, τ), U ∪ A = X,
and U ∩ A = ∅. Suppose A ∈ τα \ τ . Hence A ⊂ int (cl (int (A))) and A is regular
closed. Therefore A ∈ τ . A contradiction.
(5)⇒(3). Suppose A ∈ τ \ RO (X, τ). Then A = int (A) = int (cl (int (A))), because
A is regular closed. Hence A is regular open. A contradiction.
(6)⇒(3). Use [9, Lemma 2.2(2)]. �

Let us remark that in Definition 3.1 and in conditions (2)–(6) of Theorem 3.2
we have ∅ 6= U 6= X.

Example 3.3. (a). Consider X = {a, b, c} with the topology

τ =
{
∅, X, {a}, {b}, {a, b}

}
.

Since SO (X, τ) =
{
∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}

}
and τα = τ , then the equality

X = {a} ∪ {b, c} implies p. S-disconnectedness of (X, τ).
(b). Take the space of reals R with the usual topology. Then R is p. S-disc., since
R = (−∞, a] ∪ (a,+∞).

Definition 3.4. A not e.d. topological space (X, τ) is called to be super-properly

S-disconnected (briefly: s.p. S-disc.), if there exist A,B ⊂ X such that A,B ∈
SO (X, τ) \ τα, A ∪B = X, and A ∩B = ∅.

Example 3.5. Let X = {a, b, c, d} and τ =
{
∅, X, {a}, {d}, {a, d}

}
. Since {a, b},

{c, d} ∈ SO (X, τ) \ τα and X = {a, b} ∪ {c, d}, then (X, τ) is s.p. S-disc.

It should be noticed that the space from Example 3.3 is not s.p. S-disc.

The following remark is obvious.

Remark 3.6. A topological space (X, τ) is S-disconnected if and only if (X, τ) is
s.p. S-disc. or p. S-disc. or disconnected.

If (X, τ) is p. S-disc. or s.p. S-disc., then there exists A ∈ SO (X, τ) \ τ .
The reverse implication is not true, in general, as the following example shows.

Example 3.7. Let X = {a, b, c}, τ =
{
∅, X, {a}

}
. For this space we have SO (X, τ)\

τ =
{
{a, b}, {a, c}

}
.

Observe that the spaces in Examples 3.3 and 3.5 are connected.

Remark 3.8. Example 3.7 shows that there exists a connected space, which is not
p. S-disc.

143



ZBIGNIEW DUSZYŃSKI

Example 3.9. Let X = R2\D, where D = {(x, y) : x = 0}. In X consider the subset
topology τ of the Euclidean topology of the plane. If U = {(x, y) ∈ X : x < 0} and
V = {(x, y) ∈ X : x > 0}, then it is clear that (X, τ) is not connected. Let now

A = {(x, y) ∈ X : y < 0} ∪ {(x, y) ∈ X : y = 0, x ∈ Q},

B = {(x, y) ∈ X : y > 0} ∪ {(x, y) ∈ X : y = 0, x ∈ R \Q},

where Q stands for the set of rationals. One easily checks that A,B ∈ SO (X, τ) \ τα.
This shows that (X, τ) is s.p. S-disc. Note that if a < b and ab 6= 0, then we can put
also

A = {(x, y) ∈ X : y < 0} ∪ {(x, y) ∈ X : y = 0, x = a or x > b},

B = {(x, y) ∈ X : y > 0} ∪ {(x, y) ∈ X : y = 0, x < a or a < x ≤ b}.

Example 3.10. Let X = {a, b, c, d} and

τ =
{
∅, X, {a}, {b, c, d}, {b}, {d}, {b, d}, {a, b}, {a, d}, {a, b, d}

}
.

For this space we have τ = τα and SO (X, τ) = τ ∪
{
{b, c}, {c, d}, {a, b, c}, {a, c, d}

}
.

Partitions X = {a}∪{b, c, d} = {a, d}∪{b, c} show respectively that (X, τ) is discon-
nected and p. S-disc. One observes that this space is not s.p. S-disc.

Example 3.11. Let X = {a, b, c}, τ =
{
∅, X, {a}, {b, c}

}
. The space (X, τ) is dis-

connected and not p. S-disc.

Theorem 3.12. A topological space (X, τ) is s.p. S-disc. if and only if there exists
a set A ∈ SO (X, τ) \ τα with scl (A) ∈

(
SO (X, τ) \ τα

)
∩

(
SC (X, τ) \ c (τα)

)
.

Proof. Necessity. Let (X, τ) be s.p. S-disc., i.e., for certain A,B ∈ SO (X, τ) \ τα we
have X = A ∪ B and A ∩ B = ∅. Clearly A,B ∈ SC (X, τ) \ c (τα). Thus for A we
obtain scl (A) = A ∈

(
SO (X, τ) \ τα

)
∩

(
SC (X, τ) \ c (τα)

)
(analogously for B).

Sufficiency. Let (X, τ) be such a space that for a certain U ∈ SO (X, τ) \ τα we
have scl (U) ∈

(
SO (X, τ) \ τα

)
∩

(
SC (X, τ) \ c (τα)

)
. Put A = scl (U). So, for

B = X \ scl (U) we infer without difficulties that B ∈ SO (X, τ)\τα. Therefore (X, τ)
is s.p. S-disc. and the proof is complete. �

Lemma 3.13. Assume that for a (X, τ) the two conditions below hold.

(?) There exist disjoint subsets A ∈ SO (X, τ) \ τα, B ∈ SO (X, τ) \ {∅} with
X = A ∪B.

(??) There exists a point x ∈
(
A\ int (cl (int (A)))

)
\(cl (B)\B), where cl (B) 6=

X.

Then (X, τ) is disconnected.

144



ON S-DISCONNECTED SPACES

Proof. Suppose (X, τ) is connected. We have

X = int
(
cl (int (A)) ∪ cl (int (B))

)
⊂ int (cl (int (A))) ∪ cl (int (B)) ⊂ X

(see [1, Lemma 1.1]) and int (A) 6= ∅ 6= int (B). Thus, X = int (cl (int (A))) ∪
cl (int (B)). One easily checks that

int (cl (int (A))) ∩ cl (int (B)) = ∅ (3.1)

and similarly

int (cl (int (B))) ∩ cl (int (A)) = ∅. (3.2)

Since int (cl (int (A))) ∩ int (cl (int (B))) = ∅, int (cl (int (A))) 6= ∅ 6= int (cl (int (B))),
we infer from the supposition that X \

(
int (cl (int (A))) ∪ int (cl (int (B)))

)
6= ∅.

So, we obtain X = int (cl (int (A))) ∪ int (cl (int (B))) ∪ (cl (B) ∩ cl (A)), because
cl (int (cl (S))) = cl (S) for any semi-open subset of every topological space. Let
cl (A) 6= X (the case cl (A) = X we leave to the reader). It is easy to see
that we have cl (A) \ A = X \ (A ∪ int (B)), cl (B) \ B = X \ (B ∪ int (A)),
and consequently (cl (A) \ A) ∩ (cl (B) \ B) = ∅. So, we get what follows: X =
int (cl (int (A))) ∪ int (cl (int (B))) ∪

((
A ∪ (cl (A) \ A)

)
∩

(
B ∪ (cl (B) \ B)

))
=

int (cl (int (A))) ∪ int (cl (int (B))) ∪
(
A ∩ (cl (B) \ B)

)
∪

(
B ∩ (cl (A) \ A)

)
. Let x

be a point fulfilling the condition (??). We shall show that x /∈ int (cl (int (B))). Sup-
pose not. By (3.2) we get int (cl (int (B))) ∩ int (A) = ∅; hence x /∈ cl (int (A)) what
contradicts x ∈ A ∈ SO (X, τ). Therefore x ∈ A ∩ (cl (B) \ B). But, x /∈ cl (B) \ B

by (??). This shows that (X, τ) is disconnected. �

Theorem 3.14. Each s.p. S-disc. space fulfilling the condition (??) is disconnected.

Proof. It follows directly from Definition 3.4 and Lemma 3.13. �

Here, from the connectedness and e.d. points of view, the following is worth
noticing.

Example 3.15. A space (X, τ) may be disconnected and not e.d. Consider X =
{a, b, c, d} and τ =

{
∅, X, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {b, c, d}, {a, b, d}

}
. We

have X = {a} ∪ {b, c, d} and cl ({a, b}) = {a, b, c} /∈ τ .

Example 3.3(b) guarantees the existence of a not e.d. space which is con-
nected.

Example 3.16. (a). Let X = {a, b, c} and τ =
{
∅, X, {a}, {a, b}

}
. This space is e.d.

and connected. See also Example 3.7.
(b). The space from Example 3.11 is e.d. and disconnected.
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4. Some properties

Lemma 4.1. Let (X, τ) be any space. If S ∈ SO (X, τ) \ τα then cl (int (S)) ∈
SO (X, τ) \ τα.

Proof. It is clear that cl (int (S)) ∈ SO (X, τ). If we suppose cl (int (S)) ∈ τα, then
S ⊂ cl (int (S)) ⊂ int (cl (int (cl (int (S))))) = int (cl (int (S))). A contradiction. �

Theorem 4.2. If (X, τ) is s.p. S-disc., then (X, τ) is p. S-disc.

Proof. Assume that (X, τ) is s.p. S-disc. Then, for certain A,B ∈ SO (X, τ) \ τα ⊂
SO (X, τ) \ τ we have X = A ∪ B and A ∩ B = ∅. Clearly A ∪ cl (int (B)) = X

and hence int (A) ∪ cl (int (B)) ⊂ X. But, with [1, Lemma 1.1(b)] we obtain X =
int

(
A ∪ cl (int (B))

)
⊂ int (A) ∪ cl (int (B)). So, consequently

X = int (A) ∪ cl (int (B)).

It is easy to check that int (A) ∩ cl (int (B)) = ∅. Observe that int (A) 6= ∅
and cl (int (B)) is a nonempty semi-open subset of (X, τ), which is not open (by
Lemma 4.1). Thus, by Theorem 3.2(6), (X, τ) is p. S-disc. �

Theorem 4.2 implies the following obvious corollary.

Corollary 4.3. If (X, τ) is s.p. S-disc., then there exists an A ⊂ X such that
A ∈ c (τ) ∩

(
SO (X, τ) \ τ

)
.

Theorem 4.4. A connected topological space (X, τ) is p. S-disc. if and only if there
exists A ∈ SO (X, τ) \ τ with cl (A) /∈ τ .

Proof. We apply Theorem 3.2(6). Necessity is obvious. For a strong sufficiency,
i.e., with any (X, τ), suppose that A ∈ SO (X, τ) \ τ and cl (A) /∈ τ . Then, since
cl (A) ∈ SO (X, τ), from X = (X \ cl (A))∪ cl (A) it follows that (X, τ) is p. S-disc. �

Remark 4.5. If a space (X, τ) is not e.d. then there exists an A ∈ SO (X, τ) \ τα

with scl (A) /∈ τ .

Proof. Suppose for each A ∈ SO (X, τ) \ τα, scl (A) ∈ τ . Since (X, τ) is not e.d.,
there is an A′ ∈ τα such that scl (A′) /∈ τ [31, Theorem 2.1(iii)]. But with [14,
Proposition 2.7(a)] we have scl (A′) = int (cl (A′)). A contradiction. �

Corollary 4.6. If a space (X, τ) is connected and not p. S-disc., then for each A ∈
SO (X, τ) \ τ we have cl (A) = X.

Proof. By Theorem 4.4 we get that either X = cl (A) or X 6= cl (A) ∈ τ , but
obviously the second relation is not possible. �

Theorem 4.7. Let (X, τ) be a connected topological space. Then, the following are
equivalent:

(a) (X, τ) is s.p. S-disc. or p. S-disc.
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(b) There exists an A ∈ SO (X, τ) \ τ with scl (A) 6= X.

Proof. Strong (a)⇒(b). Let (X, τ) be p. S-disc. Then X = U ∪ A for such sets
U ∈ τ \ {X, ∅}, A ∈ SO (X, τ) \ τ that U ∩ A = ∅. Consider the set scl (A). Since A

is closed, then scl (A) = A 6= X.

(b)⇒(a). Assume that for a certain A′ ∈ SO (X, τ) \ τ we have scl (A′) 6= X. Put
A = scl (A′). Hence ∅ 6= B = X \ A 6= X and by [33, Corollary 2.2] we have
A,B ∈ SO (X, τ). The sets A and B cannot be both α-open in (X, τ), since (X, τ) is
connected by hypothesis. Thus our space is s.p. S-disc. or p. S-disc. �

Lemma 4.8. If a connected space (X, τ) is p. S-disc., then there exist sets U, V ∈
RO (X, τ) \ {∅} such that X = cl (U) ∪ V , cl (U) ∩ V = ∅ and cl (U) ∩ cl (V ) 6= ∅.
Proof. Let (X, τ) be p. S-disc. and connected. By Theorem 3.2(5) there exist
sets A ∈ SO (X, τ) \ RO (X, τ), V ∈ RO (X, τ) such that X = A ∪ V and A ∩
V = ∅ (obviously V 6= ∅). Then A ∈

(
SO (X, τ) ∩ SC (X, τ)

)
\ {∅, X} and by [6,

Proposition 2.1(c)] there exists a set U ∈ RO (X, τ) \ {∅} such that U ⊂ A ⊂ cl (U).
Hence A = cl (A) = cl (U) and cl (U) ∩ V = ∅. Observe that if cl (U) ∩ cl (V ) = ∅,
then (X, τ) is disconnected and this contradicts connectedness of (X, τ). Therefore,
cl (U) ∩ cl (V ) 6= ∅. �

By the proof of Lemma 4.8 it can be easily deduced what follows.

Theorem 4.9. If a connected space (X, τ) is p. S-disc., then there exists an open
but not regular open, disconnected subset of (X, τ).

Proof. Our consideration relies on the proof of Lemma 4.8 (including the notation).
We shall show only that the set U ∪ V is not regular open. Suppose that U ∪ V ∈
RO (X, τ). Hence int

(
cl (U) ∪ cl (V )

)
= U ∪ V  X. But, int

(
cl (U) ∪ cl (V )

)
= X,

a contradiction. �

Corollary 4.10. If (X, τ) is S-disconnected and connected, then there exists an open
disconnected subset of (X, τ).

Proof. See Remark 3.6 and Theorem 4.9. �

Lemma 4.11. If a space (X, τ) is connected and if there exist sets U, V ∈ RO (X, τ)\
{∅} such that X = cl (U) ∪ V and cl (U) ∩ V = ∅, then (X, τ) is p. S-disc.

Proof. The set cl (U) ∈ SO (X, τ) \ τ , because (X, τ) is connected. So, by Theo-
rem 3.2(3), (X, τ) is p. S-disc. �

Theorem 4.12. Let a space (X, τ) be connected. Then the following are equivalent:

1. (X, τ) is p. S-disc.
2. There exist U, V ∈ RO (X, τ)\{∅} such that X = cl (U)∪V , cl (U)∩V = ∅.
3. There exist U, V ∈ τ \ {∅} such that X = cl (U) ∪ V , cl (U) ∩ V = ∅.
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4. There exist U, V ∈ τα \ {∅} such that X = cl (U) ∪ V , cl (U) ∩ V = ∅.
5. There exist U, V ∈ RO (X, τα)\{∅} such that X = α- cl (U)∪V , α- cl (U)∩

V = ∅, where α- cl (.) denotes the closure operator with respect to τα-
topology on X.

6. There exist U, V ∈ τα \{∅} such that X = α- cl (U)∪V , α- cl (U)∩V = ∅.

Proof. (1)⇔(2). Follows by Lemmas 4.8 and 4.11.
(2)⇒(3). Obvious.
(2)⇐(3). It can be easily seen that (3)⇒(1): by Theorem 3.2(6) and connectedness
of (X, τ).
(3)⇒(4). Obvious.
(3)⇐(4). We shall show only that (4)⇒(1). By hypothesis we have U ⊂
int (cl (int (U))) and U 6= ∅. Hence cl (U) ∈ SO (X, τ) and cl (U) 6= ∅. Also,
cl (U) /∈ τα up to connectedness of (X, τ) [28, Theorem 2]. Therefore (X, τ) is p. S-
disc.
(5)⇔(2) and (6)⇔(4) follow by the proof of [14, Corollary 2.3] and [14, Proposi-
tion 2.2]. �

Remark 4.13. In Theorem 3.2, the class SO (X, τ) can be replaced also by SO (X, τα)
[21, Proposition 3] and the class RO (X, τ) by RO (X, τα).

Theorem 4.14. Let (X, τ) be a connected space. The following are equivalent:

1. (X, τ) is p. S-disc.
2. There exists a set B ∈ SC (X, τ) such that B 6= X and int (B) 6= ∅.
3. There exists a set B ∈ SC (X, τ) such that B 6= X and sint (B) 6= ∅.

Proof. (1)⇒(2). Let (X, τ) be p. S-disc. By hypothesis the space (X, τ) is con-
nected. On the other hand, from Theorem 3.2(5) we infer that there exists a set
B ∈ RO (X, τ) ⊂ SC (X, τ) with B 6= X and int (B) 6= ∅.
(2)⇒(3). Obvious.
(3)⇒(1). Suppose there exists a set B ∈ SC (X, τ) with B 6= X and sint (B) 6=
∅. From [4, Theorems 1.4(2) and 1.12] we get that B is semi-closed if and only if
sint (scl (B)) ⊂ B. Hence ∅ 6= sint (scl (B)) 6= X. By [33, Lemma 2.7], sint (scl (B)) ∈
SO (X, τ) ∩ SC (X, τ). Put U = int (sint (scl (B))). Clearly U 6= ∅ and U 6= X.
We have X \ U = cl (scl (sint (X \B))). and A = X \ U ∈ SO (X, τ), since by [33,
Lemma 2.2(iii)], the set scl (sint (X \B)) belongs to SO (X, τ). Also ∅ 6= A 6= X. The
set A cannot be a member of τ , because (X, τ) is connected. So, by Theorem 3.2(6)
the space (X, τ) is p. S-disc. �
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5. Mappings and p. S-disconnectedness

A function f : (X, τ) → (Y, σ) is called contra-continuous [8] if the preimage
f−1(V ) ∈ c (τ) for each V ∈ σ.

Remark 5.1. (a). From [9, Theorem 5.1] and Example 3.3 we infer that there
exists a subclass of not e.d. spaces (X, τ) such that any contra-continuous mapping
f : (X, τ) → (Y, σ), where (Y, σ) is T1, is constant.
(b). Also with [9, Theorem 5.1] we get that if a bijection f : (X, τ) → (R, τe), τe the
usual topology, is open and contra-continuous then (X, τ) is not p. S-disc. There-
fore, there is no open and contra-continuous bijection f : (R, τe) → (R, τe) (compare
Example 3.3(b)).

A metric space X is connected if and only if each continuous mapping f :
X → R is Darboux. This implies

Remark 5.2. From Example 3.9 we infer that there exist an s.p. S-disc. metric
space X and a continuous mapping f : X → R which is not Darboux.

A function f : (X, τ) → (Y, σ) is called almost continuous (in the sense S& S)
[30, Theorem 2.2] (resp. α-continuous [20]; irresolute [5]) if the preimage f−1(V ) ∈ τ

(resp. f−1(V ) ∈ τα; f−1(V ) ∈ SO (X, τ)) for every V ∈ RO (Y, σ) (resp. V ∈ σ;
V ∈ SO (Y, σ)). α-continuous mappings are called strongly semi-continuous in [24].
A function f : (X, τ) → (Y, σ) is called pre-semi-open [5] if f(A) ∈ SO (Y, σ) for each
A ∈ SO (X, τ). A bijection f : (X, τ) → (Y, σ) is said to be a semi-homeomorphism
(in the sense of Crossley and Hildebrand) [5], if it is pre-semi-open and irresolute.
It is well known that connected spaces are preserved under semi-homeomorphims
[5, Theorem 2.12] or almost continuous surjections [17, Theorem 4] or α-continuous
surjections [24, Theorem 3.1]. Thus, the following is clear.

Remark 5.3. Let (X, τ) be p. S-disc. and connected, and let f : (X, τ) → (Y, σ) be a
semi-homeomorphism or an almost continuous surjection, or α-continuous surjection.
Then (Y, σ) is connected.

For the case of semi-homeomorphism we shall show a stronger result in the
sequel.

Theorem 5.4. Let f : (X, τ) → (Y, σ) be a continuous surjection and (Y, σ) be a
p. S-disc. connected space. Then, there is a proper subset of X which is open and
disconnected (in (X, τ)).

Proof. From Theorem 4.9 we infer that there exists an open and disconnected proper
subset S of (Y, σ). So, f−1(S) is an open and disconnected proper subset of (X, τ). �

149



ZBIGNIEW DUSZYŃSKI

Corollary 5.5. Let f : (X, τ) → (Y, σ) be a continuous surjection and (Y, σ) be a
connected and S-disconnected space. Then, there is an open disconnected subset of
(X, τ).

Proof. Remark 3.6 and Theorem 5.4. �

Theorem 5.6. Let f : (X, τ) → (Y, σ) be a homeomorphism and (Y, σ) be p. S-disc.
and connected. Then X = A∪B, where A∩B = ∅, A is an open disconnected subset
of (X, τ), and B ∈ c (τ) \ τ .

Proof. We apply Theorems 5.4 and an obvious fact that there is no open bijection
f : (X, τ) → (Y, σ), where (X, τ) is disconnected and (Y, σ) is connected. �

Theorem 3.2 is followed by the series of results given below, concerning preim-
ages and images of p. S-disc. spaces under some well known types of functions.
Straightforward proofs are omitted.

Theorem 5.7. Let (X, τ) be connected, (Y, σ) be s.p. S-disc., and let f : (X, τ) →
(Y, σ) be an irresolute surjection. Then (X, τ) is p. S-disc.

A function f : (X, τ) → (Y, σ) is called completely continuous [2] (resp. an
R-map [3]; α-irresolute [19]) if the preimage f−1(V ) ∈ RO (X, τ) (resp. f−1(V ) ∈
RO (X, τ); f−1(V ) ∈ τα) for every V ∈ σ (resp. V ∈ RO (Y, σ); V ∈ σα).

Theorem 5.8. Let (X, τ) be not e.d. and connected, (Y, σ) be p. S-disc., and let a
surjection f : (X, τ) → (Y, σ) fulfil one of the following conditions:

1. f is irresolute and almost continuous;
2. f is irresolute and it is an R-map;
3. f is irresolute and α-continuous.

Then (X, τ) is p. S-disc.

Remark 5.9. If (X, τ) is e.d. and connected, if (Y, σ) is p. S-disc., then it is clear by
[13, Theorem 2.9(b)] and [11, Lemma 1(i)] (for the case (3)) that there is no surjection
f : (X, τ) → (Y, σ) fulfilling (1) or (2) or (3) of Theorem 5.8.

Obviously, (2) is a particular case of (1) in Theorem 5.8. Since each continu-
ous function is almost continuous, each completely continuous function is an R-map
and each α-irresolute function is α-continuous, therefore the next corollary is obvious.
None of these three implications is reversible, see respectively: [30, Example 2.1], [26,
Example 4.6], and [19, Example 1].

Corollary 5.10. Let (X, τ) be not e.d. and connected, (Y, σ) be p. S-disc., and a
surjection f : (X, τ) → (Y, σ) fulfils one of the following conditions:

(1’) f is irresolute and continuous;
(2’) f is irresolute and completely continuous;
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(3’) f is irresolute and α-irresolute.

Then (X, τ) is p. S-disc.

Remark 5.11. (a). [7, Example 7.1] shows that there exists an irresolute mapping,
which is not almost continuous and hence: not an R-map, not continuous, and not
completely continuous.
(b). [7, Example 7.2] guarantees the existence of not irresolute mapping, which is
continuous (hence almost continuous).
(c). Notions of irresolutness and α-continuity are independent of each other, see [25,
Example 3.11 and Theorem 3.12]. In [10] the author has shown that concepts of
irresolutness and α-irresolutness are independent of each other.

Example 5.12. Let X = {a, b} = Y , τ =
{
∅, X, {a}

}
, and σ =

{
∅, Y, {b}

}
. Let

f : (X, τ) → (Y, σ) be the identity function. then f is an R-map, but it is not
irresolute.

Example 5.13. Let X = {a, b, c} = Y , τ =
{
∅, X, {b}, {a, c}

}
, and σ =

{
∅, Y, {b}

}
.

Then, the identity function f : (X, τ) → (Y, σ) is completely continuous and not
irresolute.

The result from Theorem 5.8 for the case (2) may be strengthened (see The-
orem 5.20 below).

A function f : (X, τ) → (Y, σ) is said to be almost open [30] (resp. R-open;
α-open [20]) if the image f(U) ∈ σ (resp. f(U) ∈ RO (Y, σ); f(U) ∈ σα) for every
U ∈ RO (X, τ) (resp. U ∈ RO (X, τ); U ∈ τ).

Theorem 5.14. Let (X, τ) be p. S-disc., (Y, σ) be not e.d. and connected, and let a
bijection f : (X, τ) → (Y, σ) fulfil one of the following conditions:

(a) f is pre-semi-open and almost open;
(b) f is pre-semi-open and R-open;
(c) f is pre-semi-open and α-open;

Then (Y, σ) is p. S-disc.

Proof. Apply respective parts of Theorem 3.2 (obviously: (b)⇒(a)). �

Remark 5.15. By the same reasoning as mentioned in Remark 5.9, there is no
bijection between a p. S-disc. space (X, τ) and an e.d. connected space (Y, σ) fulfilling
(a) or (b) or (c) of Theorem 5.14.

Remark 5.16. (a). [23, Example 1.8] shows that there exists an almost open function
(in fact, R-open), which is not pre-semi-open.
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(b). Let X = {a, b, c} = Y , τ =
{
∅, X

}
, and σ =

{
∅, Y, {a}, {b}, {a, b}

}
. The mapping

f : (X, τ) → (Y, σ) defined as follows: f(a) = a, f(b) = f(c) = b, is almost open, but
it is not R-open.

Example 5.17. Let X = {a, b, c} = Y , τ =
{
∅, X, {b}, {a, c}

}
, and σ =

{
∅, Y, {b}

}
.

Define f : (X, τ) → (Y, σ) as in Remark 5.16(b). Then, f is pre-semi-open and not
almost open (hence not R-open).

Example 5.18. Let X = {a, b, c} = Y , τ =
{
∅, X, {b}, {b, c}

}
, and σ ={

∅, Y, {a}, {b}, {a, b}
}
. The identity function f : (X, τ) → (Y, σ) is pre-semi-open

and not α-open.

Example 5.19. Let X = {a, b, c} = Y , τ =
{
∅, X, {a}

}
, and σ =

{
∅, Y, {a}, {b, c}

}
.

We define a mapping f : (X, τ) → (Y, σ) as follows f(a) = f(b) = a, f(c) = b. Then,
f is α-open and not pre-semi-open.

Theorem 5.20. Let (X, τ) be connected, (Y, σ) be p. S-disc. and connected, and a
surjection f : (X, τ) → (Y, σ) be an R-map. Then (X, τ) is p. S-disc.

Proof. By Theorem 4.12(2) there exist U1, V1 ∈ RO (Y, σ) \ {∅} such that Y =
clY (U1) ∪ V1 and clY (U1) ∩ V1 = ∅. Clearly clY (U1) is regular closed in (Y, σ). It
is obvious that the set f−1

(
clY (U1)

)
is regular closed in (X, τ). So, we have X =

f−1(Y ) = clX
(
intX

(
f−1

(
clY (U1)

)))
∪ f−1(V1), where U = intX

(
f−1

(
clY (U1)

))
∈

τ \ {∅}, V = f−1(V1) ∈ τ \ {∅}, and clX(U) ∩ V = ∅. This proves that (X, τ) is
p. S-disc., since, by hypothesis, it is connected (Theorem 4.12(3)). �

Theorem 5.21. Let (X, τ) be a connected p. S-disc. space and f : (X, τ) → (Y, σ)
be a semi-homeomorphism. Then (Y, σ) is connected and p. S-disc.

Proof. Since (X, τ) is connected and p. S-disc., by [5, Theorem 2.12] and Theo-
rem 4.14(3) respectively, (X, τ) is connected and there exists a set B ∈ SC (X, τ)
with B 6= X and sintX(B) 6= ∅. By [5, Theorem 2.12] the space (Y, σ) is connected.
Obviously, f(B) 6= Y . Recall that for every semi-homeomorphism f : X → Y and any
B ⊂ X we have f

(
sintX(B)

)
= sintY (f(B)) [5, Corollary 1.2]. So, sintY (f(B)) 6= ∅.

It is not difficult to see that each bijective pre-semi-open map preserves semi-closed
sets. Therefore f(B) ∈ SC (Y, σ) and applying once more Theorem 4.14(3) we finish
the proof. �

Corollary 5.22. Let f : (X, τ) → (Y, σ) be a homeomorphism, (X, τ) be connected
and p. S-disc. Then, (Y, σ) is connected and p. S-disc.

Proof. [5, Theorem 1.9] and Theorem 5.21. �
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