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ON A CLASS OF ANALYTIC AND MULTIVALENT FUNCTIONS
WITH NEGATIVE COEFFICIENTS DEFINED BY AL-OBOUDI
DIFFERENTIAL OPERATOR

SERAP BULUT

Abstract. In this paper, we introduce a new class of analytic functions
defined by Al-Oboudi differential operator. For the functions belonging
to this class, we obtain coefficient inequalities, Hadamard product, radii
of close-to convexity, starlikeness and convexity, extreme points, the inte-
gral means inequalities for the fractional derivatives, and further we give
distortion theorems using fractional calculus techniques.

1. Introduction

Let A denote the class of all functions of the form
f(2) :z—i—Zakzk (1.1)
k=2

which are analytic in the open unit disk U:={z € C: |z| < 1}.
For f € A, Al-Oboudi [1] introduced the following operator:

Df(z) = f(2), (1.2)
D'f(z) = (1= 8)f(2) + 0zf'(2) = Dsf(2), §>0 (1.3)
D"f(z) = Ds(D" ' f(2)), (n€N:={1,2,3,...}). (1.4)
If f is given by (1.1), then from (1.3) and (1.4) we see that
D'f(z)=z+ Y [1+(k—1)0]"arz", (n€No:=NU{0}), (1.5)
k=2

with D" f£(0) = 0.
When ¢ = 1, we get Salagean’s differential operator [4].
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Let A, denote the class of functions of the form

flz)=2"+ Z apz" (p=12,...)

k=p+1

which are analytic and p-valent in the open unit disk U.

We can write the following equalities for the functions f € A,:

D5, f(2) = f(2),

DL f(=) = (1-0)f(2) + ng%z) = Ds,f(), 620

D3, f(z) = Dsp(D5, f(2)), (n€N).
If f is given by (1.6), then from (1.8) and (1.9) we see that

i [1 + (I; — 1) 5]nakzk7 (n € Np).

Dﬁpf(z) =P+
k=p+1

Let 7, denote the subclass of A, consisting of functions of the form

oo
fz) =2F — Z apz” (ar > 0).
k=p+1
If f is given by (1.11), then from (1.8) and (1.9) we see that
n S k S
Dy, f(z)=2"— > |14 (==1])6| a¥, (neNy).
k=p+1 p

Definition 1.1. A function f € 7, is in R} («, 3,7, 1) if and only if

(D2, 0~ per=
o (Dg, 1)) +(5-)

<, (2€U, neNy),

(1.6)

(1.10)

(1.11)

(1.12)

(1.13)

for0<a<1,0<v<1,0<8<1,0<pu<1 Here Dy, f(2) is defined as in (1.12).

In this paper, basic properties of the class ’Rg(oz, B,7, ) are studied, such

as coefficient bounds, Hadamard product, radii of close-to convexity, starlikeness and

convexity, extreme points, the integral means inequalities for the fractional deriva-

tives, and further distortion theorems are given using fractional calculus techniques.
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2. Coefficient inequalities

Theorem 2.1. A function f € T, is in the class Ry («a, 8,7, ) if and only if

ilk[“f(k—l) 5]n(1+ua)ak§u(ap+ﬁ—7). (2.1)

(O‘p‘i’ﬂ*')/) Zk (kzp—l-l)

Proof. Suppose that f € R} (a, 3,7, ). Then we have from (1.13)

Z:zo:p+1 k [1 + <§ — 1) (5}n apzF1 _
a(pzpfl_z,?;pﬂk[l—f—(%_l) 5}nakzk*1)+(5_7) e
So, we obtain
N S R

=

Q (pzpfl — Z;O:p-&-lk [1 + (5 — 1) 5]nakzk71) +(8—7)

If we choose z real and let z — 17, then we get

i k [1+ (§—1> 5r(1+ua)ak < uwlap+ B —7).

k=p+1

Conversely, suppose that the inequality (2.1) holds true and let

z€dU={z€C:|z|=1}.
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Then we find from (1.13) that

[(D3,02) =927 = | (D5, ) + (8= )|

k {1 + (k — 1) (5] apzk 1
1 p

|
(]

k=p+
—p | (pzpl — Z k [1 + <k — 1> 5} akzkl) +(B-")
5 p
=p+1
k " _
< Z k {H ( >5] ar |2[*" = plap + B — )
e p
p+1
oo k n
+po Z k {1 + ( - 1) 5] ag 2" 7!
k=p+1 p
= Z k[l—&—(—l)é] (14 pa)ag — plap+ 8 —v) <0.
k=p+1
Hence, by the maximum modulus theorem, we have f € Ry («, 3,7, ). a

Corollary 2.2. If f € Ry(«a, 3,7, 1), then

plap + B —v)p™
p+1)(p+0)" (1+pa)

ap+1 > (

Theorem 2.3. Let the functions

z)=2F — Z apz” (ar > 0), (2.2)
k=p+1

- Z by 2" (b > 0) (2.3)
k=p+1

be in the class Ry (a, 3,7, ). Then for 0 < A\ <1, the function h defined by

M= (- N M) = #— 3 et

k=p+1

:(I—A)ak+)\bk20

18 also in the class Rg(mﬁ,%u).
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ON A CLASS OF ANALYTIC FUNCTIONS

Proof.  Suppose that each of the functions f and g is in the class R} (a, 3,7, i)
Then, making use of (2.1), we see that

i k[l—i—(I;—l)é]n(l—i—ua)ck:(l—)\)ki k{l—l—(i—l)é]n(l—i—ua)ak

k=p+1 =p+1
o0 k n
+ A Z k [1+ <1> 5} (1 + pa)bg
k=p+1 p
< (1 =Nplap+ B =)+ Aulap+ 8 —7)
=plap+B-1)
which completes the proof of Theorem 2.3. O

3. Hadamard product

Next we define the modified Hadamard product of functions f and g, which
are defined by (2.2) and (2.3), respectively, by

oo

fxg(z)=2P — Z apbpz” (ar, > 0,b > 0).
k=p+1

Theorem 3.1. If each of the functions f and g is in the class R} (c, 3,7, i), then
[xg(z) € Ry(a,B,7v,m),

where
w2 (ap+ B —7) _
k [1+ (g - 1) 5} (14 pe)? — p2alap + B — )

Proof. From Theorem 2.1, we have

%0 k{l—&—(%—l)&}n(l—&-ua)

n >

ap <1 (3.1)
) p(op + 6 =)
and
o0 14;[1—1— <§—1)5} (1 + pov)
be < 1. (3.2)
Mt plap + 3 =)
We need to find the smallest 1 such that
o k[1+(E-1)8] (1+n0)
arby < 1. (3.3)

WS n(ap+ 6 —7)
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From (3.1) and (3.2) we find, by means of the Cauchy-Schwarz inequality, that

%0 k[1+(7—1)5}"(1+ua)
p(ep + 3 =)

\/akbk S 1. (34)
k=p+1

Thus it is enough to show that

k[1+(——1)5}n(1+na) k[l—l—(f—l)&r(l—&-ua)

arbr < axbr,
n(ap+ 5 —7) = ulap + 5 —7) o
that is )
Varbe < w. (3.5)

p(l+na)
On the other hand, from (3.4) we have

anbr < “io‘p +5-1) (3.6)
B[+ (5=1)8]" (14 pa)
Therefore in view of (3.5) and (3.6) it is enough to show that
plap + 6 —7) < N+ pa)
k [1+ (g —1)5} (1+pa)  HL+700)
which simplifies to
0> un ap+ 8 —7) _
k[ ( )(5} (14 pa)? — p2alap+ 4 —7)
]

4. Close-to convexity, starlikeness and convexity

A function f € 7, is said to be p-valently close-to convex of order p if it
satisfies
R{f' ()} >p
for some p (0 < p < p) and for all z € U.
Also a function f € 7, is said to be p-valently starlike of order p if it satisfies

2f'(2) }
R { >p
f(z)
for some p (0 < p < p) and for all z € U.
Further a function f € 7, is said to be p-valently convex of order p if

e

for some p (0 < p < p) and for all z € U.
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ON A CLASS OF ANALYTIC FUNCTIONS

Theorem 4.1. If f € Ry (a, 3,7, 1), then f is p-valently close-to convex of order p
in |Z| < 7"1(0475,%/%9); where

[1+ (%—1) 5}n(1+ua)(p—p)

ri(a, 8,7, 1, p) = inf , k>p+1.
(@ 8,7, 1, p) = 1 lop A=) P
Proof. Tt is sufficient to show that
f'(z)
Zp_l _p < p - p
We have
f'(2) - -
o1 P s > kar | <p-p (4.1)
k=p+1
and
o0 k n
>k [1+ (—1> 5} (1 + pa)ay < plap + B — 7). (4.2)
k=p+1 p
Hence (4.1) is true if
k n
ElzlfP k[14+(2—=1)6] (1+ pa)
e 4 () 0 »

p—p plap+ B —7)
Solving (4.3) for |z|, we obtain

_1
k—p

[1+ (% - 1) 5r(1+ua)(pfp)
plap+ 6 —17)

2| <

0
Theorem 4.2. If f € Ry(«a, 3,7, 1), then f is p-valently starlike of order p in |z| <
7’2(0[,5,’)/,#,/7), where
=

B[+ (E-1)6]" 1+ na)p—p) —_

p(ap + B —)(k —p)

7"2(047@%/17,0) = H/if

Proof. We need to show that

4o

The inequality

S ’ - ‘_Zzo—pﬂ(k —plagz*?

00 k—
SRk P2
f(z) 1 — leierl a/kzk_p

k—
1_ZZO:p+1 ak|Z| P
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holds true if

(k= p) s _k [1 + (g - 1) 5] (1+ pa)
p—p pleap+ 5 —7)
Then f is starlike of order p. ]
Theorem 4.3. If f € Ry(«a, 3,7, 1), then f is p-valently convex of order p in |z| <
7’3(0[, ﬂa Vs My p): where

1
k—p

[1 + (% - 1) 5]n (1 + pa)p(p — p)

r3(a, 8,7, u, p) = inf , k>p+1L
of )= wap+ Bk~ 7)
Proof. We must show that
2f"(2)
1 — —p.
R e R
Since
12| |\ MO PR
f'(2) D= ey kagzkp
k—
o S b pal
< = = <P P
D= D pepr kak |2
if
k— E_ "
K= p) o _ 1+ (5 -1)9] ()
plp—p) plap + 8 =)
then f is convex of order p. |

5. Extreme points

Theorem 5.1. Let f,(z) = 2P and

P plap + B8 —7) ; '
fr(2) k{1+<§—1)5r(1+ua) Fok>p+1)

Then f € Ry(a, B,7, 1) if and only if it can be expresses in the form

f(z) = /\pfp(z) + Z A fr(2),

k=p+1
where A, > 0 and A\p =1 — Z,?;p_,_l Ak
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ON A CLASS OF ANALYTIC FUNCTIONS
Proof. Assume that

f(z) =X fp(2) + Z Ak fi(2).

k=p+1

U PR < SV PR S P p(op+ 3 —7) Zk:
f(z) ( Z k) Jrz k( k[1—|—( )

%—1)5}71(1—1-/104

k=p+1 k=p+1
= P _ = A ,LL(Ozp + ﬂ 717) Zk.
g.% “k {1+ (5—1) 5} (1 + pev)
Thus
- k ! (op+8-7)
k{1+(—1>5} (1+ )]A a o
k§1[ p He kk{l—i—(%—l)&} (1+ pa)

= ploap+B8-9) D M

k=p+1
= plap+B=7)(1=2Ap)
< plop+B—7).
Therefore, we have f € Ry (a, 8,7, p).
Conversely, suppose that f € R (a, 3,7, u). Since

pwlap+ 3 —7)

ap < o (k>p+1),
' k[1+(§—1)6] (1+ pa)
we can set
k[1+(§—1)5]n(1+ua)
A = u(ap-kﬁ—W) ag (k2p+1)a
A =1- Z Ag.
k=p+1
Then

flz) = 22— i apz”

k=p+1
= M2P + 3 X | 2P — plap + 6 —7) b
’ k:zp:“ k( B[+ (5=1)8]" (14 pa)

= M)+ Y Mfil(2)

k=p+1
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This completes the proof of Theorem 5.1. ]
Corollary 5.2. The extreme points of Ry (c, 3,7, i) are given by

plap+ B8 —7)
Rl (5-1) 5]n(l+ua)Zk (hzpt)

fo(2) =28 fi(2) = 2" -

6. The main integral means inequalities for the fractional derivative

We discuss the integral means inequalities for functions f € Ry (c, 8,7, p).
The following definitions of fractional derivatives by Owa [3] (also by Srivas-

tava and Owa [5]) will be required in our investigation.

Definition 6.1. The fractional integral of order A is defined by

1 # t
D) = s | et (>0,

where the function f is analytic in a simply connected region of the complex z-plane

containing the origin and the multiplicity of (z—¢)*~! is removed by requiring log(z—t)

to be real when (z —t) > 0.

Definition 6.2. The fractional derivative of order A is defined, for a function f, by
D) f(z) = F(ll—)\)jz/o @JC_(I?)Adt 0< A<, (6.1)

where the function f is analytic in a simply connected region of the complex z-plane

containing the origin and the multiplicity of (z—%)~* is removed by requiring log(z—t)

to be real when (z —t) > 0.

Definition 6.3. Under the hypothesis of Definition 6.2, the fractional derivative of

order p + A is defined, for a function f, by

dp
DE f(2) =~ DA (), (6.2)
z
where 0 < A < 1 and p € Ng.

It readily follows from Definitions 6.1 and 6.2 that

_ T'(k+1)
DAk = —— L kA (A>0,keN 6.3
S T gy R EEN) (63)
and
L(k+1)
DMh = kA < 1 4
o4 F(k—)\—&—l)z (0<A<1, keN), (6.4)
respectively.

We will also need the concept of subordination between analytic functions

and a subordination theorem of Littlewood [2] in our investigation.
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ON A CLASS OF ANALYTIC FUNCTIONS
Definition 6.4. Given two functions f and g, which are analytic in U, the function
f is said to be subordinate to g in U if there exists a function w analytic in U with
w(0) =0, lw(z)] <1 (z€0),
such that
f(z) =g(w(z)) (z€0).
We denote this subordination by
1) < 9(2).
Lemma 6.5. If the functions f and g are analytic in U with
f(z) = g(2),

then, for o >0 and z =re?® (0 <r < 1),

27 2m
/0 |f(2)] des/o 19(2)|” df.

Theorem 6.6. Let f € Ry («a,,v, 1) and suppose that

, (ap+B—NIk+DI2+p—A—0q)
- )q a; < s n
j:zp;l(j vt k[1+(§—1)5} 1+ pa)l(k+1-A—gT(p+1—q)

(6.5)

for0<q<j,0<X<1, where (j — q)q+1 denotes the Pochhammer symbol defined
by

=D =0 -G —g+1)--J. (6.6)
Also let the function fi be defined by
fu(z) =27 — uap+5—7) & (k>p+1). (6.7)

k{1+ (5—1)5} (1 + pe)
If there exists an analytic function w defined by

k{l—i—(%—1)5r(1+ua)r(k+l_>\_q) %

k—p s ; =P
W e ) Moy 2, U P
(6.8)
(k > q), with
\I/(j)zM 0<A <1, 7>p+1) (6.9)
FG+1-X—gq)’ - = ’ '
then, for o >0 and z =re?® (0 <r < 1),
27 27
/ DI f(2)|” db < / |DI fiu(2)|7db,  (0< A< 1). (6.10)
0 0
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Proof. Let f(z) =27 =372 ) a;jz7. By means of (6.4) and Definition 6.3, we have

T(p 4 1)zp—>—4 — TG+D)Ip+1-A-q)
Dq+)\ = 7 @ |1-= L
CE A v o e j:;ll“(p—i—l)l“(j—i—l—)\—@a]z
D(p+1)2P~274 o~ p+1-X—9q)
_ e+ 1)z T ImATD v e
T(p+1—X—gq) _Z L(p+1) U= en¥l)as2
L Jj=p+1
where
‘ I'(j—q) ;
U(j)=—" 2 (0<A<1,j>p+1).
W=tGr1oa—g Szl

Since W is a decreasing function of j, we get

I'(p+1—q)

0<Y() <V¥(p+1)= T2+p—r—gq)

Similarly, from (6.7), (6.4), and Definition 6.3, we have

DI fi(2)
_T(p+ 1)z plop+B8-lk+D(p+1-A—q) k—p
Flp+1-A-q) [ (% ) } 1+ pa)T(p+1)I(E+1—-X—gq)

For ¢ >0 and z =re?? (0 <r < 1), we must show that

2 0 F(p+1_)\_q) - - - o
) T Torn U Den (e do
/O 1 j=zp-:i-1 L(p+1) (= Dgr1¥(j)ajz
27 ploap+ B8 —7) T+ DI(p+1-XA—q) ,_ -
- ! Plode.
) /0 k[1+(§—1>5] (1+ua)r(p+1)l"(k;+1_>\_q)2’

So, by applying Lemma 6.5, it is enough to show that

= Ip+1-X2—¢q) . N
1— E S AT s U =P
F(p—|— 1) (J Q)q+1 (J)G’J'Z

plap+ 8 —7) Tk +DL(p+1-A—q) 4,
k;[1+(g_1)5]”(1+W)F(p+1)F(k+1—/\_q) :

Jj=p+1
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If the above subordination holds true, then we have an analytic function w with
w(0) = 0 and |w(z)| < 1 such that
oo
F'p+1-X—gq),. _ .
1= Y — = g1 ¥(j)a;z 7
Pt I'p+1)
plap+ B8 —7) T+ DI(p+1-A-q)

B[+ (E-1)0]" (14 pay TP+ DI+ 1=2 =)

By the condition of the theorem, we define the function w by

wlap+ 6 —7) T'(k+1) jzzp;l(]_Q)q+1‘I/(])ajz

= 1—

(w(2))*7".

(w(2)"" =
which readily yields w(0) = 0. For such a function w, we have

i+ (E-1)6] G+ pa)pgir—amg &

k—p . S Zj—P
(a7 < D 2 Gt
B[+ (5 -1)8] o) pges 1 —a—g) =

k[l—f—(%—1)6}n(1+ua)F(k+1—)\—Q)F(p-f'l—Q) >

= Iz J = Qg1
. wlap+B—yT(E+1DT2+p—A—q) j:§1< Jot10s
<lz| <1
by means of the hypothesis of the theorem.
Thus theorem is proved. O

As a special case ¢ = 0, we have following result from Theorem 6.6.

Corollary 6.7. Let f € Ry («a, 3,7, ) and suppose that

S jay < plap + 6 —y)l(k+ D2 +p = A)

ke (B=1) o] 4 pe)r 1 - 0T+ 1) (k>p+1)

If there exists an analytic function w defined by

plap + B8 —7) D(k+1) > (a7,

Jj=p+1

(w(=))" ™" =

with
I'(j)
TG+1-X)

v(j) = O<A<l jzp+l),
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then, for o >0 and z =re?® (0 <r < 1),

/%;D;f(z)]"deg/ |D2fu(2)|"d8, (0<A<1).
0 0

Letting ¢ = 1 in Theorem 6.6, we have the following.
Corollary 6.8. Let f € Ry(«a, 8,7, 1) and suppose that

» plap+ B -7k +DI(14+p—A)
( - ]‘)a’j < n .
j:z,;lj ’ k {1 n (7 - 1) 5} (14 pa)T(k — NI (p)

If there exists an analytic function w defined by

[+ (E-1)08]" (4 pa)pg— ) &

k=p _ (i~ 1)W(i)a, 0P
(w(e)) 7 = TS j;ﬂm D()a,
with ‘
wgg;;g, (0<A<1,j>p+1),

then, for o >0 and z =re® (0 <r < 1),
27 2 -
/ |DIFAf(2)]” d9</ |IDI fe(2)]7do,  (0<A<1).
0 0

7. Distortion theorems involving operators of fractional calculus

Theorem 7.1. If f € Ry («, 3,7, 1), then we have

N Llp+1) | pea { p(ap+ 6 —7)p" }
S T e L R e e i
and
A I'(p+1) IS f(ep + B —~)p"
D=7 ’_Fer)\Jrl) 2" [ (p+6)"(1+ pa)(p+ A+ 1) Z'}’
for A > 0.

Proof. Suppose that f € Rg(a, 8,7, p). Using Theorem 2.1, we find that

(p+1) [14—5} (14 por) Z ap < plap+ 5 —7)
p k=p+1

or

plep + B —~)p"
k%f’“- (p+1) (p+0)" (1+pa)
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From (6.3), we have

Tlp+A+1) o > F(k+1)r(p+A+1)a L
oy - DB = kglr(p+1)r(k+A+1) k
= P — i (ka2 (7.5)
k=p+1

where
B Fk+1DT(p+A+1)

= . 7.6
(k) Fp+1I(k+A+1) (7.6)
Clearly, ¥ is a decreasing function of k and we get
p+1
0<¥(k)<V(p+1) = ——.
(k) < W+ 1) = L
Using (7.4) — (7.6), we obtain
I(p+A+1 -
M)Zi)‘]);)‘f(z) < |Z|P + \I/(p+ 1) |Z|P+1 Z ag
L(p+1) k=
=p+1
p plap + 8 —~)p" P+l | o1
< P+ 7 ||
(p+1)(p+0)" (1 +pa)p+A+1
which is equivalent to (7.1) and
F(p+A+1 -
D026 2 - DR S
(p+1) Mt
127 — plap + B8 —~)p" p+1 Fias
N (P+1)(+0)" (1+pa)p+A+1
which is precisely the assertion (7.2). O

The proof of Theorem 7.2 below is similar to that of Theorem 7.1, which we
have detailed above fairly fully. Indeed, instead of (6.3), we make use of (6.4) to prove
Theorem 7.2.

Theorem 7.2. If f € Ry(«a, 3,7, 1), then we have

A Pp+1) | pa plap+ B8 —~)p" ;
D) < g e 7 [ et e | 0

and

A Pp+1) pafy plap + B —y)p" B
D6 2 S o - e ] )

Corollary 7.3. If f € Rg(a,ﬁﬁ,u), then we have

P plap + 5 —~)p" il
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pulop + 8 —~)p" 2Pt
(p+0)"(1+pa)(p+A+1) '
Proof. From Definition 6.1, we have
lim D2 f(z) = f(z).
lim Df(2) = f(2)
Therefore, letting A = 0 in (7.1) and (7.2), we obtain (7.9).
Corollary 7.4. If f € Ryj(«a, 3,7, 1), then we have

< lzl” +

p—1 plop + 8 —~)p" Py
pllr ™t = et P o <)

(p+0)"(1+pa)(p—A+1)
Proof. From Definition 6.2, we have

lim D2f(2) = f(2).
Therefore, letting A = 1 in (7.7) and (7.8), we obtain (7.10).
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