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INFINITELY MANY SOLUTIONS FOR A CLASS OF ELLIPTIC
VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

GIUSEPPINA D’AGUÌ AND DONAL O’REGAN

Abstract. The aim of the present paper is to give some results on the exis-

tence of infinitely many solutions for a class of nonlinear elliptic variational-

hemivariational inequalities. The approach is based on a result of infinitely

many critical points.

1. Introduction

In mechanics and physics there is a variety of variational inequality formula-
tions which arise when the material laws or the boundary conditions are derived by
a convex, generally not everywhere differentiable and finite superpotential ([12]).The
variational inequalities have a precise physical meaning: they express the principle
of virtual work (or power) in its inequality form. Moreover, there exists a variety of
nonmonotone laws which manifests the need for the derivation of variational formu-
lations for nonconvex and not everywhere differentiable and finite energy functions
(nonconvex superpotentials). Such variational formulations have been called by P.D.
Panagiotopoulos ([10], [11]) hemivariational inequalities and describe large families
of important problems in physics and engineering. It should also be noted that the
hemivariational inequalities are closely connected to the notion of the generalized
gradient of Clarke, which in the case of lack of convexity plays the same role as
the subdifferential in the case of convexity (at least for static mechanical problems).
Roughly speaking, variational-hemivariational inequalities may be regarded as hemi-
variational inequalities subject to variational constraints. Consequently, a further
term, namely the subdifferential of some proper, convex, and lower semicontinuous
function, appears inside the equation.

Several authors have been interested in the study of variational-hemivaria-
tional inequalities, for example, S. A. Marano and D. Motreanu, in the very nice paper
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[8], studied the existence of infinitely many solutions for a class of elliptic variational
hemivariational inequality with p−Laplacian.

Let Ω be a non-empty, bounded, open subset of the Euclidian space RN ,
N ≥ 3, with a boundary of class C1, let p ∈]N,+∞[, and let q ∈ L∞(Ω) satisfy
ess infx∈Ω q(x) > 0. Given a closed convex subset K of W 1,p(Ω) containing the
constant functions, they consider the following variational-hemivariational inequality
problem

Find u ∈ K fulfilling

−
∫

Ω

[
|∇u(x)|p−2∇u(x)∇(v(x)− u(x)) + q(x)|u(x)|p−2u(x)(v(x)− u(x))

]
dx

≤
∫

Ω

[α(x)F ◦(u(x); (v(x)− u(x))) + β(x)G◦(u(x); (v(x)− u(x)))]dx, ∀v ∈ W 1,p(Ω)

where F (ξ) =
∫ ξ

0

f(t)dt, G(ξ) =
∫ ξ

0

g(t)dt for all ξ ∈ R, with f, g : R → R locally

essentially bounded, α, β ∈ L1(Ω) such that min{α(x), β(x)} ≥ 0 a.e. in Ω.

In the study of this problem, they apply a result obtained by the same authors
([8, Theorem 1.1]), on the existence of infinitely many critical points.

The main purpose of the present paper is to establish the existence of infinitely
many solutions for an elliptic variational-hemivariational inequality with p−Laplacian
type: Find u ∈ K fulfilling

−
∫

Ω

[
|∇u(x)|p−2∇u(x)∇(v(x)− u(x)) + q(x)|u(x)|p−2u(x)(v(x)− u(x))

]
dx

≤ λ

∫
Ω

F ◦(x, u(x); (v(x)− u(x)))dx

for all v ∈ K, with λ positive real parameter.
The approach is based on a result of infinitely many critical points due to G.

Bonanno and G. Molica Bisci [4] which is a more precise version of [8, Theorem 1.1].
It is worth noticing that our results allow us to consider also the case when

the sign of the nonlinear term is constant, see for instance Theorem 3.2 and Example
3.3, in which the nonlinear term h is nonpositive. We observe that this case cannot
be investigated by applying [8, Theorem 2.1], (see Remark 3.5).

2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space. We denote by X∗ the dual space
of X, while 〈·, ·〉 stands for the duality pairing between X∗ and X. A function
h : X → R is called locally Lipschitz continuous when to every x ∈ X there correspond
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a neighborhood Vx of x and a constant Lx ≥ 0 such that

|h(z)− h(w)| ≤ Lx‖z − w‖ ∀ z, w ∈ Vx .

If x, z ∈ X, we write h◦(x; z) for the generalized directional derivative of h at the
point x along the direction z, i.e.,

h◦(x; z) := lim sup
w→x, t→0+

h(w + tz)− h(w)
t

.

For locally Lipschitz h1, h2 : X → R, we have

(h1 + h2)◦(x, z) ≤ h◦1(x, z) + h◦2(x, z), ∀x, z ∈ X. (2.1)

The generalized gradient of the function h in x, denoted by ∂h(x), is the set

∂h(x) := {x∗ ∈ X∗ : 〈x∗, z〉 ≤ h◦(x; z) ∀ z ∈ X} .

We say that x ∈ X is a (generalized) critical point of h when

h◦(x; z) ≥ 0 ∀ z ∈ X,

that clearly signifies 0 ∈ ∂h(x).
When a non-smooth functional, g : X →]−∞,+∞], is expressed as a sum of a

locally Lipschitz function, h : X → R, and a convex, proper, and lower semicontinuous
function, j : X →]−∞,+∞], that is g := h + j, a (generalized) critical point of g is
every u ∈ X such that

h◦(u; v − u) + j(v)− j(u) ≥ 0,

for all v ∈ X (see [9, Chapter 3]).
Here and in the sequel X is a reflexive real Banach space, Φ : X → R is

a sequentially weakly lower semicontinuous functional, Υ : X → R is a sequentially
weakly upper semicontinuous functional, λ is a positive real parameter, j : X →
]−∞,+∞] is a convex, proper and lower semicontinuous functional and D (j) is the
effective domain of j.
Write

Ψ := Υ− j and Iλ := Φ− λΨ = (Φ− λΥ) + λj.

We also assume that Φ is coercive and

D(j) ∩ Φ−1(]−∞, r[) 6= ∅ (2.2)

for all r > infX Φ. Moreover, from (2.2) and provided r > infX Φ, we can define

ϕ(r) = inf
u∈Φ−1(]−∞,r[)

(
sup

u∈Φ−1(]−∞,r[)

Ψ(u)

)
−Ψ(u)

r − Φ(u)
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and

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Assuming also that Φ and Υ are locally Lipschitz functionals, in [4] the au-
thors obtained the following result, which is a more precise version of [8, Theorem
1.1].

Theorem 2.1. Under the above assumptions on X, Φ and Ψ, one has

(a) For every r > infX Φ and every λ ∈]0, 1
ϕ(r) [, the restriction of the func-

tional Iλ = Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which is
a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈]0, 1
γ [, the following alternative holds:

either
(b1) Iλ possesses a global minimum,
or

(b2) there is a sequence {un} of critical points (local minima) of Iλ such
that limn→+∞ Φ(un) = +∞.

(c) If δ < +∞ then, for each λ ∈]0, 1
δ [, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or
(c2) there is a sequence {un} of pairwise distinct critical points (local min-

ima) of Iλ, with limn→+∞ Φ(un) = infX Φ, which weakly converges to
a global minimum of Φ.

3. Existence Results

In this section, we present an applications of Theorem 2.1 to a Neumann-type
problem for a variational-hemivariational inequality involving the p-Laplacian.

Let Ω be a non-empty, bounded, open subset of the Euclidian space RN ,
N ≥ 3, with a boundary of class C1, let p ∈]N,+∞[, and let q ∈ L∞(Ω) satisfy
ess infx∈Ω q(x) > 0. On the space W 1,p(Ω), we consider the norm

‖u‖ :=
(∫

Ω

(|∇u(x)|p + q(x)|u(x)|p)dx

) 1
p

,

which is equivalent to the usual one.
Let f : Ω× R → R be locally essentially bounded. Put

F (x, ξ) =
∫ ξ

0

f(x, t)dt.
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The function F is locally Lipschitz. So, it makes sense to consider its generalized
directional derivative F ◦.

Given a closed convex subset K of W 1,p(Ω) containing the constant functions,
denote by (P ) the following variational-hemivariational inequality problem:

Find u ∈ K fulfilling

−
∫

Ω

[
|∇u(x)|p−2∇u(x)∇(v(x)− u(x)) + q(x)|u(x)|p−2u(x)(v(x)− u(x))

]
dx

≤ λ

∫
Ω

F ◦(x, u(x); (v(x)− u(x)))dx

for all v ∈ K, with λ positive real parameter.
Put

c = sup
u∈W 1,p(Ω)\{0}

supx∈Ω |u(x)|(∫
Ω
|∇u(x)|pdx +

∫
Ω

q(x)|u(x)|pdx
) 1

p

. (3.1)

From (3.1), we infer at once that

cp‖q‖1 ≥ 1. (3.2)

Let

A = lim inf
ξ→+∞

∫
Ω

max
|t|≤ξ

−F (x, t)dx

ξp
, B = lim sup

ξ→+∞

∫
Ω

−F (x, ξ)dx

ξp
,

and

λ1 =
‖q‖1

pB
, λ2 =

1
pcpA

. (3.3)

Our main result is the following.

Theorem 3.1. Assume that

lim inf
ξ→+∞

∫
Ω

max
|t|≤ξ

(−F (x, t)) dx

ξp
<

1
cp‖q‖1

lim sup
ξ→+∞

∫
Ω

(−F (x, ξ)) dx

ξp
. (3.4)

Then, for each λ ∈]λ1, λ2[, where λ1, λ2 are given in (3.3), problem (P ) possesses an
unbounded sequence of solutions.

Proof. Our aim is to apply part (b) of Theorem 2.1. Take as X the Sobolev space
W 1,p(Ω) endowed with the norm

‖u‖ =
(∫

Ω

|∇u(x)|pdx +
∫

Ω

q(x)|u(x)|pdx
) 1

p

.

For each u ∈ X, put

Φ(u) :=
1
p
‖u‖p, Υ(u) :=

∫
Ω

−F (x, u(x))dx.
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and

j(u) =

{
0, if u ∈ K,

+∞, otherwise.

Since, Ψ := Υ− j,

Iλ :=
1
p
‖u‖p−λ

(∫
Ω

−F (x, u(x))dx− j(u)
)

=
(

1
p
‖u‖p − λ

∫
Ω

−F (x, u(x))dx

)
+λj.

Pick λ ∈]λ1, λ2[. Let {ρn} be a real sequence such that lim
n→∞

ρn = +∞ and

lim
n→∞

∫
Ω

max|t|≤ρn
(−F (x, t))dx

ρp
n

= A.

Put rn =
1
p

(ρn

c

)p

for all n ∈ N. Taking into account ‖v‖p < prn and ‖v‖∞ ≤ c‖v‖,

one has |v(x)| ≤ ρn, for every x ∈ Ω. Therefore,

ϕ(rn) = inf
‖u‖p<prn

sup
‖v‖p<prn

(∫
Ω

−F (x, v(x))dx− j(v)
)
−
(∫

Ω

−F (x, u(x))dx− j(u)
)

rn −
‖u‖p

p

≤
sup

‖v‖p<prn

(∫
Ω

−F (x, v(x))dx− j(v)
)

rn
≤

sup
‖v‖p<prn

∫
Ω

−F (x, v(x))dx

rn

≤

∫
Ω

max
|t|≤ρn

−F (x, t)dx

rn

Hence,

ϕ(rn) ≤ pcp

∫
Ω

max
|t|≤ρn

(−F (x, t))dx

ρp
n

∀n ∈ N.

Then,
γ ≤ lim inf

n→+∞
ϕ(rn) ≤ pcpA < +∞.

Now, we claim that the functional Φ− λΨ is unbounded from below.
Let {dn}be a real sequence such that lim

n→∞
dn = +∞ and

lim
n→∞

∫
Ω

−F (x, dn)dx

dp
n

= B. (3.5)

For each n ∈ N, put wn(x) = dn, for all x ∈ Ω. Clearly wn ∈ W 1,p(Ω) for each n ∈ N.
Hence,

‖wn‖p = dp
n‖q‖1
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and

Φ(wn)− λΨ(wn) =
‖wn‖p

p
− λ

∫
Ω

−F (x, wn(x))dx + λj(wn)

=
dp

n‖q‖1

p
− λ

∫
Ω

−F (x, dn)dx.

Now, if B < +∞, let ε ∈
]
0, B − ‖q‖1

pλ

[
. From (3.5) there exists νε such that∫

Ω

−F (x, dn)dx > (B − ε)dp
n, ∀n > νε.

Therefore,

Φ(wn)− λΨ(wn) =
dp

n‖q‖1

p
− λ

∫
Ω

−F (x, dn)dx <
dp

n‖q‖1

p
− λdp

n(B − ε)

= dp
n

(
‖q‖1

p
− λ(B − ε)

)
.

From the choice of ε, one has

lim
n→+∞

[Φ(wn)− λΨ(wn)] = −∞.

If B = +∞, fix M >
‖q‖1

pλ
. From (3.5) there exists νM such that∫

Ω

−F (x, dn)dx > Mdp
n, ∀n > νM .

Moreover,

Φ(wn)−λΨ(wn) =
dp

n‖q‖1

p
−λ

∫
Ω

−F (x, dn)dx <
dp

n‖q‖1

p
−λMdp

n = dp
n

(
‖q‖1

p
− λM

)
.

Taking into account the choice of M , also in this case, one has

lim
n→+∞

[Φ(wn)− λΨ(wn)] = −∞.

From part (b) of Theorem the functional Φ− λΨ admits a sequence of critical points
un ⊆ W 1,p(Ω) such that limn→∞ Φ(un) = +∞ , that means for each point un

(Φ− λΥ)◦(un, v − un) + j(v)− j(un) ≥ 0 ∀v ∈ X. (H)

Since Φ is bounded on bounded sets and taking into account that limn→+∞ Φ(un) =
+∞, then {un} has to be unbounded. Moreover, from (H) we obtain un ∈ K, ∀n ∈ N,
so

(Φ− λΥ)◦(un, v − un) ≥ 0 ∀v ∈ K.

From (2.1) and the regularity of Φ, it follows

Φ
′
(un, v − un) + λ[−Υ(un, v − un)]◦ ≥ 0 ∀v ∈ K.
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Therefore,∫
Ω

[
|∇un(x)|p−2∇un(x)∇(v(x)− un(x)) + q(x)|un(x)|p−2un(x)(v(x)− un(x))

]
dx+

+λ

[∫
Ω

F (x, un(x); (v(x)− un(x)))dx

]◦
≥ 0 ∀v ∈ K.

From an inequality concerning the integral functionals ([7]), we have

[−Υ(un, v − un)]◦ =
[∫

Ω

F (x, un(x); (v(x)− un(x)))dx

]◦
≤

≤
∫

Ω

F ◦(x, un(x); (v(x)− un(x)))dx.

Then,∫
Ω

[
|∇un(x)|p−2∇un(x)∇(v(x)− un(x)) + q(x)|un(x)|p−2un(x)(v(x)− un(x))

]
dx+

+λ

∫
Ω

F ◦(x, un(x); (v(x)− un(x)))dx ≥ 0;

that is

−
∫

Ω

[
|∇un(x)|p−2∇un(x)∇(v(x)− un(x)) + q(x)|un(x)|p−2un(x)(v(x)− un(x))

]
dx

≤ λ

∫
Ω

F ◦(x, un(x); (v(x)− un(x)))dx.

�

Given α ∈ L1(Ω), such that α(x) ≥ 0 a.e. in Ω, let h : R → R be a locally
essentially bounded, such that h(x) ≤ 0 a.e. in R. Consider the following problem:

(PH) Find u ∈ K fulfilling

−
∫

Ω

[
|∇u(x)|p−2∇u(x)∇(v(x)− u(x)) + q(x)|u(x)|p−2u(x)(v(x)− u(x))

]
dx

≤ λ

∫
Ω

α(x)H◦(u(x); (v(x)− u(x)))dx

for all v ∈ K, with λ positive real parameter.
An immediate consequence of Theorem 3.1 is the following

Theorem 3.2. Assume that

lim inf
ξ→+∞

(−H(ξ))
ξp

<
1

cp‖q‖1
lim sup
ξ→+∞

(−H(ξ))
ξp

.

Then for every λ ∈

 ‖q‖1

p‖α‖1 lim sup
ξ→+∞

(−H(ξ))
ξp

,
1

pcp‖α‖1 lim inf
ξ→+∞

(−H(ξ))
ξp

, problem

(PH) possesses an unbounded sequence of solutions.
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Example 3.3. Put

an :=
2n!(n + 2)!− 1

4(n + 1)!
, bn :=

2n!(n + 2)! + 1
4(n + 1)!

for every n ∈ N, and define the non-positive (and discontinuous) function h : R → R
as follows

h(ξ) :=

 −2(n + 1)![np−1(n + 1)!p − (n− 1)p−1n!p] if ξ ∈
⋃
n≥0

]an, bn[

0 otherwise.

Direct computations ensure that

lim sup
ξ→+∞

−H(ξ)
ξp

= +∞ and lim inf
ξ→+∞

−H(ξ)
ξp

= 0.

Owing to Theorem 3.2 for each λ > 0 the problem (PH) possesses a sequence of
solutions.

Remark 3.4. We explicitly observe that we cannot apply [8, Theorem 2.1] to the
problem of Example 3.3, since hypotheses (3.6), (3.7), recalled below, do not hold,
namely, supposed that there exist two sequences {ξn} ⊆ R, {rn} ⊆ R+ such that
limn→+∞ rn = +∞,

H(ξn) = inf
|ξ|≤c(prn)1/p

H(ξ), ∀n ∈ N, (3.6)

1
p
‖q‖1|ξn|p < rn ∀n ∈ N, (3.7)

and taking into account that H is nonincreasing, we obtain that cp‖q‖1 < 1, which
contradicts (3.2).

Remark 3.5. When f is an L1-Carathéodory while K = W 1,p(Ω) the above inequal-
ity takes the form

−
∫

Ω

[
|∇u(x)|p−2∇u(x)∇(w(x)) + q(x)|u(x)|p−2u(x)(w(x))

]
dx

= λ

∫
Ω

f(x, u(x))w(x)dx, ∀w ∈ W 1,p(Ω).

Therefore, in such a case, a function u ∈ W 1,p(Ω) solves (P) if and only if it is a weak
solution to the Neumann problem

∆pu− q(x)|u|p−2u = λf(x, u) in Ω

∂u

∂ν
= 0 in ∂Ω,

with ν being the outer unit normal to ∂Ω.
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We observe that this problem has been addressed recently in [2], by applying
directly Theorem 2.1 to smooth functionals.

The results can be applied to study the above problem with discontinuous
nonlinear term (see, for instance [1], [3]).
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[5] Brézis, H., Analyse Fonctionelle - Théorie et Applications, Masson, Paris, 1983.

[6] Chang, K. C.., Variational methods for nondifferentiable functionals and their applica-

tions to partial differential equations, J. Math. Anal. Appl., 80 (1981), 102–129.

[7] Clarke, F. H., Optimization and Nonsmooth Analysis, Classics Appl. Math., 5, SIAM,

Philadelphia, 1990.

[8] Marano, S. A., Motreanu, D., Infinitely many critical points of non-differentiable func-

tions and applications to a Neumann type problem involving the p-Laplacian, J. Diff.

Eqs., 182 (2002), 108-120.

[9] Motreanu, D., Panagiotopoulos, P. D., Minimax Theorems and Qualitative Properties

of the Solutions of Hemivariational Inequalities, Nonconvex Optim. Appl., 29 Kluwer,

Dordrecht, 1998.

[10] Naniewicz, Z., Panagiotopoulos, P. D., Mathematical Theory of Hemivariational In-

equalities and Applications, Marcel Dekker, NewYork, 1995.

[11] Panagiotopoulos, P. D., Hemivariational Inequalites. Applications to Mechanics and

Engineering, Springer, New York, 1993.

[12] Panagiotopoulos, P. D., Inequality Problems in Mechanics. Convex and Nonconvex En-

ergy Functions, Birkhauser Verlag, Basel/Boston 1985.

[13] Ricceri, B., A general variational principle and some of its applications, J. Comput.

Appl. Math., 133 (2000), 401-410.

DIMET, University of Reggio Calabria and University of Messina

Italy

E-mail address: dagui@@unime.it

Department of Mathematics, National University of Ireland

Galway, Ireland

E-mail address: donal.oregan@@nuigalway.ie

82


