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INFINITELY MANY SOLUTION FOR A NONLINEAR NAVIER
BOUNDARY VALUE PROBLEM INVOLVING THE p-BIHARMONIC

PASQUALE CANDITO AND ROBERTO LIVREA

Abstract. The existence of infinitely many solutions is established for a

class of nonlinear elliptic equations involving the p-biharmonic operator

and under Navier boundary value conditions. The approach adopted is

fully based on critical point theory.

1. Introduction

In this paper, we are interested in studying the existence of infinitely many
solutions for the following nonlinear elliptic Navier boundary value problem involving
the p-biharmonic {

∆(|∆u|p−2∆u) = λf(x, u) in Ω
u = ∆u = 0 on ∂Ω,

(1.1)

where Ω is an open bounded subset of RN with a smooth enough boundary ∂Ω,
(N ≥ 1), p > max{1, N/2}, ∆ is the usual Laplace operator, λ is a positive parameter
and f ∈ C0(Ω̄×R).

In these latest years, many authors looked for multiple solutions of boundary
value problems involving biharmonic and p-biharmonic type operators, see for instance
[5], [11], [12], [14] and the references cited therein.

More precisely, in [10], assuming that f(x, ·) is odd and by using the Sym-
metric Mountain Pass Theorem of Ambrosetti-Rabinowitz, the existence of infinitely
many solutions for nonlinear elliptic equations with a general p-biharmonic type op-
erator and under either Navier or Dirichlet boundary conditions has been obtained.
In [9], see also [13], requiring that the nonlinearity f is the sum of an odd term
and a non-odd perturbation, via perturbation theory, the existence of infinitely many
sign-changing solutions for problem (1.1) for p = 2 and N ≥ 5 has been established.
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Moreover, in such frameworks, some additional suitable growth conditions, for exam-
ple that f is p-sublinear at zero and p-superlinear at infinity, are supposed.

Here, we achieve our goal under different assumptions on f which turn out
to be mutually independent with respect to those adopted on the above mentioned
papers, see Examples 3.3 and 3.7. In particular, we obtain well precise intervals of
parameters such that problem (1.1) admits either an unbounded sequence of solutions
(Theorem 3.1) provided that f has a suitable behaviour at infinity or a sequence of
non-zero solutions (Theorem 3.8) strongly converging to zero if a similar behaviour
occurs at zero. Moreover, we explicitly observe that in the autonomous case (Theorem
3.4) our conclusions are sharped (Remark 3.5).

On the other hand, it is worth noticing that the results contained in [4], where
the authors required that the nonlinearity changes sign in a suitable way, are included
in the case α = 0 and β = ∞ treated here (Remark 3.2), where the nonlinearity can
also be nonnegative (Corollary 3.6). This is due to the fact that we use a more precise
version of Ricceri’s variational principle [7], given by Bonanno and Molica Bisci in [1].
Very recently, the same approach adopted here has also been followed in [3] to look
for infinitely many solutions for a fourth order equation in the one dimensional case
which, as particular case, contains problem (1.1) with p = 2.

For general references and for a complete and exhaustive overview on varia-
tional methods we refer the reader to the excellent monographs [6] and [8].

2. Preliminaries

Here and in the sequel Ω is an open bounded subset of RN (N ≥ 1), p >

max{1, N/2}, while X denotes the space W 2,p(Ω)∩W 1,p
0 (Ω) endowed with the norm

‖u‖ =
(∫

Ω

|∆u(x)|pdx

)1/p

∀u ∈ X. (2.1)

The Rellich Kondrachov Theorem assures that X is compactly imbedded in C0(Ω̄),
being

k := sup
u∈X\{0}

‖u‖C0(Ω̄)

‖u‖
< +∞. (2.2)

Let f ∈ C0(Ω̄×R) and let us put

F (x, t) :=
∫ t

0

f(x, ξ)dξ ∀(x, t) ∈ Ω̄×R.

For our approach we will use the functionals Φ,Ψ : X → R defined by putting

Φ(u) :=
1
p
‖u‖p, Ψ(u) :=

∫
Ω

F (x, u(x))dx
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for every u ∈ X. It is simple to verify that Φ and Ψ are well defined, as well as Gâteaux
differentiable. Moreover, in view of the fact that Φ is continuous and convex, it turns
out sequentially weakly lower semicontinuous, while, since Ψ has compact derivative,
it results sequentially weakly continuous. In particular, one has

Φ′(u)(v) =
∫

Ω

|∆u(x)|p−2∆u(x)∆v(x)dx, Ψ′(u)(v) =
∫

Ω

f(x, u(x))v(x)dx

for every u, v ∈ X.
We explicitly observe that, in view of (2.2), one has that, for every r > 0

Φ−1(]−∞, r[) := {u ∈ X : Φ(u) < r} ⊆ {u ∈ C0(Ω̄) : ‖u‖C0 < k(pr)1/p}. (2.3)

Finally, if we recall that a weak solution of problem (1.1) is a function u ∈ X such
that ∫

Ω

|∆u(x)|p−2∆u(x)∆v(x)dx− λ

∫
Ω

f(x, u(x))v(x)dx = 0 ∀v ∈ X,

it is obvious that our goal is to find critical points of the functional Φ− λΨ. For this
aim, our main tool is a general critical points theorem due to Bonanno and Molica
Bisci (see [1]) that is a generalization of a previous result of Ricceri [7] and that here
we state in a smooth version for the reader’s convenience.

Theorem 2.1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is sequentially weakly lower semicon-
tinuous and coercive and Ψ is sequentially weakly upper semicontinuous. For every
r > infX Φ, let us put

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

(
supv∈Φ−1(]−∞,r[) Ψ(v)

)
−Ψ(u)

r − Φ(u)

and
γ := lim inf

r→+∞
ϕ(r), δ := lim inf

r→(infX Φ)+
ϕ(r).

Then, one has

(a) for every r > infX Φ and every λ ∈
]
0, 1

ϕ(r)

[
, the restriction of the func-

tional Iλ = Φ− λΨ to Φ−1(]−∞, r[) admits a global minimum, which is
a critical point (local minimum) of Iλ in X.

(b) If γ < +∞ then, for each λ ∈
]
0, 1

γ

[
, the following alternative holds:

either
(b1) Iλ possesses a global minimum,
or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such
that limn→+∞ Φ(un) = +∞.
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(c) If δ < +∞ then, for each λ ∈
]
0, 1

δ

[
, the following alternative holds:

either
(c1) there is a global minimum of Φ which is a local minimum of Iλ,
or
(c2) there is a sequence of pairwise distinct critical points (local minima)
of Iλ which weakly converges to a global minimum of Φ.

3. Main results

Fixed x0 ∈ Ω, let us pick 0 < s1 < s2 such that B(x0, s2) ⊆ Ω and put

L :=
Γ

(
1 + N

2

)
πN/2

(
s2
2 − s2

1

2Nk

)p 1
sN
2 − sN

1

, (3.1)

where Γ denotes the Gamma function and k is defined in (2.2).

Theorem 3.1. Assume that

(i1) F (x, t) ≥ 0 for every (x, t) ∈ Ω× [0,+∞[;
(i2) There exist x0 ∈ X, 0 < s1 < s2 as considered in (3.1) such that, if we

put

α := lim inf
t→+∞

∫
Ω

max|ξ|≤t F (x, ξ)dx

tp
, β := lim sup

t→+∞

∫
B(x0,s1)

F (x, t)dx

tp
,

one has

α < Lβ. (3.2)

Then, for every λ ∈ Λ :=
1

pkp

]
1

Lβ
,
1
α

[
problem (1.1) admits an unbounded sequence

of weak solutions.

Proof. With the purpose of applying Theorem 2.1, we begin observing that, for
every r > 0, taking in mind (2.3), one has

ϕ(r) ≤
supΦ−1(]−∞,r[) Ψ

r
≤

∫
Ω

max|ξ|≤k(pr)1/p F (x, ξ)dx

r
. (3.3)

At this point, we consider a sequence {tn} of positive numbers such that tn → +∞
and

lim
n→+∞

∫
Ω

max|ξ|≤tn
F (x, ξ)dx

tpn
= α. (3.4)

For every n ∈ N let us consider rn = 1
p

(
tn

k

)p. Putting together (3.3), (3.4) and (3.2)
one has

γ ≤ lim inf
n→+∞

ϕ(rn) ≤ pkp lim
n→+∞

∫
Ω

max|ξ|≤tn
F (x, ξ)dx

tpn
< +∞. (3.5)
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Moreover, we can also observe that, owing to (3.4) and (3.5),

Λ ⊆
]
0,

1
γ

[
.

Fix λ ∈ Λ and claim that

Φ− λΨ is unbounded from below. (3.6)

Indeed, since 1
λ < pkpLβ, we can consider a sequence {τn} of positive numbers and

η > 0 such that τn → +∞ and

1
λ

< η < pkpL

∫
B(x0,s1)

F (x, τn)dx

τp
n

(3.7)

for every n ∈ N large enough. Let {wn} be a sequence in X defined by putting

wn(x) =


τn if x ∈ B(x0, s1)

τn

s2
2−s2

1
[s2

2 −
∑N

i=1(xi − x0
i )

2] if x ∈ B(x0, s2) \B(x0, s1)

0 if x ∈ Ω \B(x0, s2).

(3.8)

Fixed n ∈ N, a simple computation shows that

Φ(wn) =
1
p

(
2Nτn

s2
2 − s2

1

)p
πN/2

Γ(1 + N/2)
(sN

2 − sN
1 ) =

τp
n

pkpL
. (3.9)

On the other hand, thanks to assumption (i1), one has

Ψ(wn) =
∫

Ω

F (x,wn(x))dx ≥
∫

B(x0,s1)

F (x, τn)dx. (3.10)

According to (3.9), (3.10) and (3.7) we achieve

Φ(wn)− λΨ(wn) ≤ τp
n

pkpL
− λ

∫
B(x0,s1)

F (x, τn)dx <
τp
n

pkpL
(1− λη)

for every n ∈ N large enough. Hence, (3.6) holds.
The alternative of Theorem 2.1 (case (b)) assures the existence of an unbounded
sequence {un} of critical points of the functional Φ − λΨ and the proof is complete
in view of the considerations made in the previous section. �

Remark 3.2. We explicitly observe that it is easier to verify assumption (3.2) pro-
vided that α = 0 and β = +∞ and of course in this case the interval Λ becomes
]0,+∞[. This situations occurs, for instance, in [4].

Example 3.3. Let Ω be an open, bounded subset of R2 and g ∈ C0(Ω̄) \ {0} a
nonnegative function. Put

an := en!, bn := en! + n, cn := (an + bn)/2, dn := (bn + an+1)/2
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for every n ∈ N∗ := N \ {0} and define the following function

h(t) :=


∑

n∈N∗ 1[an,bn[
b4n

cn−an

(
1− |t−cn|

cn−an

)
if t ∈ ∪n∈N∗ [an, bn[,∑

n∈N∗ 1[bn,an+1[
−b4n

dn−bn

(
1− |t−dn|

dn−bn

)
if t ∈ ∪n∈N∗ [bn, an+1[,

0 otherwise ,

where the symbol 1[r,s[ denotes the characteristic function of the interval [r, s[. A
qualitative graph of h is shown in the figure below.
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Moreover, let us put

f(x, t) := g(x)h(t), (3.11)

for every (x, t) ∈ Ω̄×R. Hence, one has that

F (x, t) =
∫ t

0

f(x, ξ)dξ = g(x)H(t)

for every (x, t) ∈ Ω̄×R, where

H(t) =
∫ t

0

h(τ)dτ ∀t ∈ R.

It is easy to verify that, for every n ∈ N∗,∫ bn

an

h(τ)dτ = b4
n and

∫ an+1

bn

h(τ)dτ = −b4
n.
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From this, a simple computation gives

H(an) = 0,

∫
Ω

max
|ξ|≤an+1

F (x, ξ)dx = H(bn)
∫

Ω

g(x)dx = b4
n

∫
Ω

g(x)dx.

Hence,

α ≤
∫

Ω

g(x)dx lim
n→+∞

b4
n

a3
n+1

= 0.

Moreover, let x0 ∈ Ω such that g(x0) > 0, fix s1 > 0 such that B(x0, s1) ⊂ Ω and
g(x) > 0 for every x ∈ B(x0, s1), one has

β ≥
∫

B(x0,s1)

g(x)dx lim
n→+∞

H(bn)
b3
n

= +∞.

Applying Theorem 3.1, we can conclude that, for every λ > 0 the following problem{
∆(|∆u|∆u) = λg(x)h(u) in Ω
u = ∆u = 0 on ∂Ω,

admits an unbounded sequence of weak solutions.

In order to give the best formulation of the previous Theorem 3.1 in the
autonomous case, let us observe that the function s : Ω̄ → R+

0 defined by

s(x) = d(x, ∂Ω) ∀x ∈ Ω̄

is Lipschitz continuous. Hence, there exists y0 ∈ Ω such that

s̄ = s(y0) = max
x∈Ω

s(x),

that is s̄ is the biggest possible radius among all the balls contained in Ω.
Moreover, let µ̄ ∈]0, 1[ be the point where the function µN (1−µ2)p

1−µN attains its
maximum in ]0, 1[.

Theorem 3.4. Let h : R → R be a continuous function such that:

(i1)′ H(t) =
∫ t

0
h(ξ)dx ≥ 0 for every t ∈ [0,+∞[;

(i2)′ Put

α′ := lim inf
t→+∞

max|ξ|≤t H(t)
tp

, β′ := lim sup
t→+∞

H(t)
tp

,

one has

α′ < L′β′,

where

L′ =
s̄2p

(2Nk)p|Ω|
µ̄N (1− µ̄2)p

1− µ̄N
. (3.12)
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Then, for every λ ∈ 1
pkp|Ω|

]
1

L′β′
,

1
α′

[
the following problem

{
∆(|∆u|p−2∆u) = λh(u) in Ω
u = ∆u = 0 on ∂Ω,

(3.13)

admits an unbounded sequence of weak solutions.

Proof. Put x0 = y0, s2 = s̄, s1 = µ̄s̄ and f(x, t) = h(t) for every (t, x) ∈ Ω̄ × R.
Obviously (i1)′ implies (i1). Moreover,

α = |Ω|α′, β =
πN/2

Γ(1 + N/2)
(s̄µ̄)Nβ′, L =

|Ω|Γ(1 + N/2)
πN/2(µ̄s̄)N

L′.

Hence, in view of (i2)′, one has

α < |Ω|L′β′ = Lβ,

that is (i2) holds and the conclusion follows directly from Theorem 3.1. �

Remark 3.5. It is worth noticing that in our framework, whenever β′ < +∞, taking
in mind the properties of s̄ and µ̄, the choice of such a L′ is the best possible.

An immediate consequence of Theorem 3.4 is the following

Corollary 3.6. Let h : R → R be a continuous and nonnegative function such that

lim inf
t→+∞

H(t)
tp

< L′ lim sup
t→+∞

H(t)
tp

, (3.14)

being L′ defined in (3.12). Then, for every

λ ∈ Λ′ :=
1

pkp|Ω|

]
1

L′ lim supt→+∞
H(t)
tp

,
1

lim inft→+∞
H(t)
tp

[
,

problem (3.13) admits an unbounded sequence of weak solutions.

Proof. It follows from Theorem 3.4 observing that, in view of the nonnegativity of
h, (i1)′ holds and α′ = lim inft→+∞

H(t)
tp . �

Example 3.7. Let Ω =]0, 4[, p = 2 and h : R → R be a function defined by putting

h(t) :=

{
2t

(
1 + 2 sin2(ln t) + 2 sin(ln t) cos(ln t)

)
if t ∈]0,+∞[,

0 if t ∈]−∞, 0].

Obviously, h is continuous and nonnegative. Moreover,

H(t) =
∫ t

0

h(ξ)dξ =

{
t2

(
1 + 2 sin2(ln t)

)
if t ∈]0,+∞[,

0 if t ∈]−∞, 0].
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Hence, putted an = enπ and bn = e
2n+1

2 π for every n ∈ N, one has that

lim inf
t→+∞

H(t)
tp

≤ lim
n→+∞

H(an)
a2

n

= 1 (3.15)

and

lim sup
t→+∞

H(t)
tp

≥ lim
n→+∞

H(bn)
b2
n

= 3. (3.16)

In view of Proposition 2.1 of [2], one has that

k ≤ 1
2π

. (3.17)

Hence, from (3.12), (3.17) and the definition of µ̄, it follows that

L′ =
1
k2

µ̄(1− µ̄)(1 + µ̄)2 >
9
4
π2. (3.18)

Putting together (3.15), (3.16) and the definition of L′, it is simple to verify that
condition (3.14) holds, as well as ]

2
27

,
π2

2

[
⊂ Λ′.

Finally, applying Corollary 3.6, one has that for every λ ∈
]

2
27 , π2

2

[
the following

problem 
uiv = λh(u) in ]0, 4[,
u(0) = u(4) = 0,

u′′(0) = u′′(4) = 0,

admits an unbounded sequence of weak solutions.

Similar reasonings assure the existence of infinitely many weak solutions to
problem (1.1) converging at zero. More precisely, the following result holds.

Theorem 3.8. Assume that (i1) is satisfied. Suppose that

(j2) There exist x0 ∈ X, 0 < s1 < s2 as considered in (3.1) such that, if we
put

α0 := lim inf
t→0+

∫
Ω

max|ξ|≤t F (x, ξ)dx

tp
, β0 := lim sup

t→0+

∫
B(x0,s1)

F (x, t)dx

tp
,

one has

α0 < Lβ0. (3.19)

Then, for every λ ∈ 1
pkp ] 1

Lβ0 , 1
α0 [ problem (1.1) admits a sequence {un} of weak

solutions such that un → 0.
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Proof. Once observed that minX Φ = Φ(0) = 0, let {tn} be a sequence of positive
numbers such that tn → 0+ and

lim
n→+∞

∫
Ω

max|ξ|≤tn
F (x, ξ)dx

tpn
= α0 < +∞. (3.20)

Putting rn = 1
p

(
tn

k

)p for every n ∈ N and working as in the proof of Theorem 3.1, it
follows that δ < +∞.

Fix now λ ∈ 1
pkp ] 1

Lβ0 , 1
α0 [ and claim that

Φ− λΨ has not a local minimum at zero. (3.21)

Let {τn} be a sequence of positive numbers and η > 0 such that τn → 0+ and

1
λ

< η < pkpL

∫
B(x0,s1)

F (x, τn)dx

τp
n

(3.22)

for every n ∈ N large enough. Let {wn} be the sequence in X defined in (3.8).
Putting together (3.9), (3.10) and (3.22) we achieve

Φ(wn)− λΨ(wn) <
τp
n

pkpL
(1− λη) < 0 = Φ(0)− λΨ(0)

for every n ∈ N large enough, that implies claim (3.21) in view of the fact that
‖wn‖ → 0.
The alternative of Theorem 2.1 (case (c)) completes the proof. �

Remark 3.9. In the same spirit of the previous Theorem 3.8, it could be possible to
obtain suitable versions of Theorem 3.4, as well as Corollary 3.6, when the ‘lim inf’ and
the ‘lim sup’ are considered for t → 0+, in order to assure the existence of arbitrarily
small weak solutions of problem (3.13).
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