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Abstract. Let M0 be the class of meromorphic functions in U̇ of the form

g(z) =
1

z
+α0 +α1z+ · · · , z ∈ U̇ . For Φ, ϕ ∈ H[1, 1], Φ(z)ϕ(z) 6= 0, z ∈ U ,

α, β, γ, δ ∈ C with β 6= 0 and g ∈ M0, we consider the integral operator

JΦ,ϕ
α,β,γ,δ : K ⊂ M0 → M0 defined by

JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

, z ∈ U̇ .

The first result of this paper gives us the conditions for which JΦ,ϕ
α,β,γ,δ will

be well-defined. Furthermore, we study the properties of a function G =

Jβ,γ(g), where Jβ,γ = J1,1
β,β,γ,γ , when g ∈ M∗

0 (α, δ). For the second result

we consider β < 0, γ−β > 0, α ∈ [α0, 1), where α0 = max

{
β + γ + 1

2β
,
γ

β

}
and we find the order of starlikeness of the class Jβ,γ(M∗

0 (α)). For the third

result we consider 0 ≤ α < 1, 0 < β < γ and we find some conditions for

α, β, γ and δ = δ(α, β, γ) such that

Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂ M∗

0 (δ).

1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane, U̇ = U \ {0}
and H(U) = {f : U → C : f is holomorphic in U}.

We will also use the following notations:

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + . . .} for a ∈ C, n ∈ N∗,

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + an+2z

n+2 + . . .}, n ∈ N∗,
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and for n = 1 we denote A1 by A and this set is called the class of analytic functions

normalized at the origin.

Let S∗ be the class of normalized starlike functions on U , i.e.

S∗ =
{
f ∈ A : Re

zf ′(z)
f(z)

> 0, z ∈ U
}
.

We denote by M0 the class of meromorphic functions in U̇ of the form

g(z) =
1
z

+ α0 + α1z + · · · , z ∈ U̇ .

Let

M∗
0 =

{
g ∈M0 : Re

[
−zg

′(z)
g(z)

]
> 0, z ∈ U

}
be called the class of meromorphic starlike functions in U̇ .

We note that if f is a normalized starlike function in U , then the function g =
1
f

belongs to the class M∗
0 .

For α < 1, δ > 1 let

M∗
0 (α) =

{
g ∈M0 : Re

[
−zg

′(z)
g(z)

]
> α, z ∈ U

}
,

M∗
0 (α, δ) =

{
g ∈M0 : α < Re

[
−zg

′(z)
g(z)

]
< δ, z ∈ U

}
.

Definition 1.1. [3, p.4], [4, p.45] Let f, g ∈ H(U). We say that the function f is

subordinate to the function g, and we denote this by f(z) ≺ g(z), if there is a function

w ∈ H(U), with w(0) = 0 and |w(z)| < 1, z ∈ U, such that

f(z) = g[w(z)], z ∈ U.

Remark 1.2. If f(z) ≺ g(z), then f(0) = g(0) and f(U) ⊆ g(U).

Theorem 1.3. [3, p.4], [4, p.46] Let f, g ∈ H(U) and let g be a univalent function

in U . Then f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊆ g(U).

Definition 1.4. [3, p. 46], [4, p.228] Let c ∈ C with Re c > 0 and n ∈ N∗. We

consider

Cn = Cn(c) =
n

Re c

[
|c|
√

1 +
2Re c
n

+ Im c

]
.
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If the univalent function R : U → C is given by R(z) =
2Cnz

1− z2
, then we will

denote by Rc,n the ”Open Door” function, defined as

Rc,n(z) = R

(
z + b

1 + b̄z

)
= 2Cn

(z + b)(1 + b̄z)
(1 + b̄z)2 − (z + b)2

,

where b = R−1(c).

Theorem 1.5. [3, Theorem 2.5c.] Let Φ, ϕ ∈ H[1, n] with Φ(z) 6= 0, ϕ(z) 6= 0, for

z ∈ U . Let α, β, γ, δ ∈ C with β 6= 0, α + δ = β + γ and Re (α + δ) > 0. Let the

function f(z) = z + an+1z
n+1 + · · · ∈ An and suppose that

α
zf ′(z)
f(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rα+δ,n(z).

If F = IΦ,ϕ
α,β,γ,δ(f) is defined by

F (z) = IΦ,ϕ
α,β,γ,δ(f)(z) =

[
β + γ

zγΦ(z)

∫ z

0

fα(t)ϕ(t)tδ−1dt

] 1
β

, (1.1)

then F ∈ An with
F (z)
z

6= 0, z ∈ U, and

Re
[
β
zF ′(z)
F (z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

All powers in (1.1) are principal ones.

Lemma 1.6. [3, Theorem 2.3i.], [4, p.209] Let ψ : C2 × U → C be a function that

satisfies the condition

Reψ(ρi, σ; z) ≤ 0 , (1.2)

when ρ, σ ∈ R,σ ≤ −n
2

(1 + ρ2), z ∈ U ,n ≥ 1.

If p ∈ H[1, n] and

Reψ(p(z), zp′(z); z) > 0, z ∈ U,

then

Re p(z) > 0, z ∈ U.

Theorem 1.7. [3, Theorem 3.2a.], [4, p.247] Let β, γ ∈ C, β 6= 0 and let h be a

convex function on U such that Re [βh(z) + γ] > 0, z ∈ U . If p ∈ H[h(0), n] and

p(z) +
zp′(z)

βp(z) + γ
≺ h(z),
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then p(z) ≺ h(z).

Theorem 1.8. [5], [4, p.299](the order of starlikeness of the class Iβ,γ(S∗(α)))

Let β > 0, γ + β > 0 and consider the integral operator Iβ,γ defined by

Iβ,γ(f)(z) =
[
γ + β

zγ

∫ z

0

tγ−1fβ(t)dt
] 1

β

.

If α ∈ [α0, 1) where α0 = max
{
β − γ − 1

2β
,−γ

β

}
, then the order of starlikeness of

the class Iβ,γ(S∗(α)) is given by

δ(α;β, γ) =
1
β

[
γ + β

2F1(1, 2β(1− α), γ + 1 + β; 1
2 )
− γ

]
,

where 2F1 represents the hypergeometric function.

2. Main results

Let Φ, ϕ ∈ H[1, 1] with Φ(z)ϕ(z) 6= 0, z ∈ U and let α, β, γ, δ ∈ C with β 6= 0.

The first result of this section is a corollary of Theorem 1.5 and gives us the conditions

for which the integral operator JΦ,ϕ
α,β,γ,δ : K ⊂M0 →M0,

JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

,

is well-defined.

Theorem 2.1. Let Φ, ϕ ∈ H[1, 1] with Φ(z)ϕ(z) 6= 0, z ∈ U . Let α, β, γ, δ ∈ C with

β 6= 0, α+ γ = β + δ and Re (γ − β) > 0. If g ∈M0 and

α
zg′(z)
g(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rδ−α,1(z), (2.1)

then

G(z) = JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

∈M0,

with zG(z) 6= 0, z ∈ U, and

Re
[
β
zG′(z)
G(z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

All powers are chosen as principal ones.
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Proof. We denote α1 = −α, β1 = −β, so we have γ+β1 = δ+α1, and Re (γ+β1) > 0.

We remark that from (2.1) we have zg(z) 6= 0, z ∈ U.
We know that g ∈M0 with zg(z) 6= 0, z ∈ U , if and only if f =

1
g
∈ A1 with

f(z)
z

6= 0, z ∈ U. It is also easy to see that
zg′(z)
g(z)

= −zf
′(z)

f(z)
, z ∈ U.

Using these new notations we obtain

α1
zf ′(z)
f(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rδ+α1,1(z), z ∈ U,

and applying Theorem 1.5 we have

F (z) = IΦ,ϕ
α1,β1,γ,δ(f)(z) =

[
β1 + γ

zγΦ(z)

∫ z

0

fα1(t)ϕ(t)tδ−1dt

] 1
β1

∈ A1,

with
F (z)
z

6= 0, z ∈ U, and

Re
[
β1
zF ′(z)
F (z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

Therefore, we have G(z) =
1

F (z)
∈M0 with zG(z) 6= 0 and, because

zG′(z)
G(z)

= −zF
′(z)

F (z)
, z ∈ U,

we also have

Re
[
β
zG′(z)
G(z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

�

We next consider a special case of Theorem 2.1. If we let Φ ≡ ϕ ≡ 1,

α = β, γ = δ and if we use the notation Jβ,γ instead of J1,1
β,β,γ,γ , we obtain:

Corollary 2.2. Let β, γ ∈ C with β 6= 0 and Re (γ − β) > 0. If g ∈M0 and

β
zg′(z)
g(z)

+ γ ≺ Rγ−β,1(z),

then

G(z) = Jβ,γ(g)(z) =
[
γ − β

zγ

∫ z

0

gβ(t)tγ−1dt

] 1
β

∈M0, (2.2)

with zG(z) 6= 0, z ∈ U, and

Re
[
β
zG′(z)
G(z)

+ γ

]
> 0, z ∈ U.

233



ALINA TOTOI

Remark 2.3. 1. Let us define the classes Kβ,γ as

Kβ,γ =
{
g ∈M0 : γ + β

zg′(z)
g(z)

≺ Rγ−β,1(z), z ∈ U
}
.

From Corollary 2.2, we have Jβ,γ : Kβ,γ →M0 with zJβ,γ(g)(z) 6= 0, z ∈ U, and

Re
[
γ + β

zJ ′β,γ(g)(z)
Jβ,γ(g)(z)

]
> 0, z ∈ U.

2. We denote

K̃β,γ =
{
g ∈M0 : Re

[
γ + β

zg′(z)
g(z)

]
> 0, z ∈ U

}
.

Using the above corollary we have Jβ,γ(Kβ,γ) ⊂ K̃β,γ , so Jβ,γ(K̃β,γ) ⊂
K̃β,γ , where β, γ ∈ C with β 6= 0 and Re (γ − β) > 0.

3. Let β < 0, γ ∈ C with Re γ > β and
Re γ
β

≤ α < 1. Then, from

Jβ,γ(K̃β,γ) ⊂ K̃β,γ , we deduce Jβ,γ(M∗
0 (α)) ⊂M∗

0

(
Re γ
β

)
.

It’s easy to see that from

G(z) =
[
γ − β

zγ

∫ z

0

tγ−1gβ(t)dt
] 1

β

, z ∈ U̇ ,

we obtain

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
, z ∈ U. (2.3)

Next we will study the properties of the image of a function g ∈ M∗
0 (α, δ)

through the integral operator Jβ,γ defined by (2.2).

Theorem 2.4. Let β > 0, γ ∈ C and 0 ≤ α < 1 < δ ≤ Re γ
β

.

If g ∈M∗
0 (α, δ), then G = Jβ,γ(g) ∈M∗

0 (α, δ).

Proof. We know that g ∈M∗
0 (α, δ) is equivalent to

α < Re
[
−zg

′(z)
g(z)

]
< δ, z ∈ U,

so,

Re γ − βδ < Re
[
γ + β

zg′(z)
g(z)

]
< Re γ − βα, z ∈ U, when β > 0.

Because δ ≤ Re γ
β

we get Re
[
γ + β

zg′(z)
g(z)

]
> 0, z ∈ U, and using Corollary 2.2, we

obtain that G = Jβ,γ(g) ∈M0, zG(z) 6= 0, z ∈ U, and Re
[
γ + β

zG′(z)
G(z)

]
> 0, z ∈ U .
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From (2.3) we know that

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
.

Since G ∈M0 with zG(z) 6= 0, z ∈ U, we have p(z) = −zG
′(z)

G(z)
∈ H[1, 1].

It’s not difficult to see that there is a convex function q on U such that q(U) = {z ∈
C : α < Re z < δ} and q(0) = 1, so

g ∈M∗
0 (α, δ) ⇒ −zg

′(z)
g(z)

≺ q(z).

Now we have

p(z) +
zp′(z)

γ − βp(z)
≺ q(z) ,with q convex on U, q(0) = 1.

We want to apply Theorem 1.7 to the above differential subordination, so we need to

see that Re [γ − βq(z)] > 0, z ∈ U .

Since β > 0, we obtain from α < Re q(z) < δ, z ∈ U, that

Re γ − βδ < Re [γ − βq(z)] < Re γ − βα, z ∈ U.

Because δ ≤ Re γ
β

we have Re [γ − βq(z)] > 0, z ∈ U, and using Theorem 1.7 we

obtain p(z) ≺ q(z), which is equivalent to

−zG
′(z)

G(z)
≺ q(z), z ∈ U. (2.4)

Since G ∈M0, we get from (2.4) that G ∈M∗
0 (α, δ). �

Taking β = 1 in the above theorem we obtain:

Corollary 2.5. Let γ ∈ C and 0 ≤ α < 1 < δ ≤ Re γ. If g ∈M∗
0 (α, δ), then

G = J1,γ(g) =
γ − 1
zγ

∫ z

0

tγ−1g(t)dt ∈M∗
0 (α, δ).

Theorem 2.6. Let β < 0, γ ∈ C and
Re γ
β

≤ α < 1 < δ.

If g ∈M∗
0 (α, δ), then G = Jβ,γ ∈M∗

0 (α, δ).

Proof. From Remark 2.3 item 3., we have Jβ,γ(M∗
0 (α)) ⊂ M∗

0

(
Re γ
β

)
, hence

G = Jβ,γ(g) ∈ M∗
0

(
Re γ
β

)
. Since G ∈ M∗

0

(
Re γ
β

)
, we have G ∈ M0 and zG(z) 6=

0, z ∈ U, so −zG
′(z)

G(z)
∈ H[1, 1].
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Because g ∈M∗
0 (α, δ) and

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
,

we will use the same idea as at the proof of Theorem 2.4. So, we have to see that

Re [γ − βq(z)] > 0, z ∈ U , where q is convex on U, q(0) = 1, q(U) = {z ∈ C : α <

Re z < δ} .

From Re q(z) > α, z ∈ U, we obtain Re γ−βRe q(z) > Re γ−αβ ≥ 0, z ∈ U ,

when α ≥ Re γ
β

, β < 0.

Applying Theorem 1.7 to the differential subordination

p(z) +
zp′(z)

γ − βp(z)
≺ q(z), z ∈ U,

we obtain p(z) ≺ q(z), which is equivalent to

−zG
′(z)

G(z)
≺ q(z), z ∈ U. (2.5)

Since G ∈M0, we get from (2.5) that G ∈M∗
0 (α, δ). �

Remark 2.7. If we consider δ → ∞ in the above theorem, we obtain that for β <

0, γ ∈ C, β < Re γ and
Re γ
β

≤ α < 1,

g ∈M∗
0 (α) ⇒ G = Jβ,γ(g) ∈M∗

0 (α).

Definition 2.8. For a given number α ∈
[
Re γ
β

, 1
)

, where β < 0, γ ∈ C, β < Re γ,

we define the order of starlikeness of the class Jβ,γ(M∗
0 (α)) as the biggest number

µ = µ(α;β, γ) such that Jβ,γ(M∗
0 (α)) ⊂M∗

0 (µ).

Theorem 2.9. (the order of starlikeness of the class Jβ,γ(M∗
0 (α))) Let

β < 0, γ − β > 0 and let Jβ,γ be given by (2.2). If α ∈ [α0, 1), where α0 =

max
{
β + γ + 1

2β
,
γ

β

}
, then the order of starlikeness of the class Jβ,γ(M∗

0 (α)) is given

by

µ(α;β, γ) = − 1
β

[
γ − β

2F1(1, 2β(α− 1), γ + 1− β; 1
2 )
− γ

]
,

where 2F1 represents the hypergeometric function.
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Proof. We know that if g ∈M0 with zg(z) 6= 0, z ∈ U, then
1
g
∈ A.

It’s not difficult to see that

Jβ,γ(g) =
1

I−β,γ

(
1
g

) , β < 0, g ∈M∗
0 (α).

Using the fact that g ∈ M∗
0 (α) is equivalent to

1
g
∈ S∗(α), we obtain from Theorem

1.8 that

I−β,γ(S∗(α)) ⊂ S∗(δ(α;−β, γ)),

so

Jβ,γ(M∗
0 (α)) ⊂M∗

0 (δ(α;−β, γ)).

It’s easy to prove that δ(α;−β, γ) is the largest number µ such that Jβ,γ(M∗
0 (α)) ⊂

M∗
0 (µ), so the order of starlikeness of the class Jβ,γ(M∗

0 (α))) is µ(α;β, γ) =

δ(α;−β, γ). �

Further we will find some conditions for α, β, γ and δ = δ(α, β, γ) such that

Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂M∗

0 (δ).

Theorem 2.10. Let 0 ≤ α < 1 and 0 < β < γ. Let’s denote

β1(α, γ) =
2
√

2γ(α− 1)2 + α− α− 1
2(α− 1)2

,

δ1(α, β, γ) =
2αβ + 2γ + 1−

√
(1 + 2αβ − 2γ)2 + 8(γ − β)

4β
,

δ2(α, β, γ) =
2αβ + 2β + 1−

√
(1 + 2αβ − 2β)2 + 8(β − γ)

4β
.

If γ >
1
8

and β < β1(α, γ), then Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂M∗

0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
, then Jβ,γ [M∗

0 (α) ∩Kβ,γ ] ⊂M∗
0 (δ(α, β, γ)), where

δ(α, β, γ) = min{δ1(α, β, γ), δ2(α, β, γ)}. (2.6)

The operator Jβ,γ is defined by (2.2).

Proof. We remark that β1(α, γ) is a real number and it is the greatest root for the

equation

∆2 = (1 + 2αβ − 2β)2 + 8(β − γ) = 4(α− 1)2β2 + 4β(α+ 1) + 1− 8γ = 0,
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hence ∆2 ≥ 0, when β ≥ β1(α, γ).

It’s not difficult to see that

β1(α, γ) ≥ 0 ⇔ (8γ − 1)(α− 1)2 ≥ 0 ⇔ γ ≥ 1
8
.

We next verify that the number δ1(α, β, γ) is less than 1. It’s obvious that

δ1(α, β, γ) is a real number since γ−β > 0. Further we will use the notation δ1 instead

of δ1(α, β, γ).

We have δ1 < 1 if and only if

2αβ + 2γ + 1− 4β <
√

(1 + 2αβ − 2γ)2 + 8(γ − β). (2.7)

If 2αβ + 2γ + 1− 4β < 0 then the inequality (2.7) is fulfilled.

If 2αβ + 2γ + 1− 4β ≥ 0, we use the square of the inequality (2.7) and after a simple

computation, we obtain that (2.7) is equivalent to (β − γ)(1 − α) < 0 which is true

for β < γ and α ∈ [0, 1). Thus, we have δ1 < 1.

Since g ∈ Kβ,γ , with β < γ, we have from Corollary 2.2 that zG(z) = zJβ,γ(g)(z) 6=
0, z ∈ U. Now let us put

−zG
′(z)

G(z)
= (1− δ)p(z) + δ, z ∈ U, (2.8)

where p ∈ H(U) with p(0) = 1 and δ < 1. We remark that the function p also depends

on δ.

Using (2.8) and the logarithmic differential for (2.2), we obtain

−zg
′(z)
g(z)

− α = (1− δ)p(z) + δ − α+
(1− δ)zp′(z)

γ − βδ − (1− δ)βp(z)
, z ∈ U.

Let us denote

ψ(p(z), zp′(z); z) = (1− δ)p(z) + δ − α+
(1− δ)zp′(z)

γ − βδ − (1− δ)βp(z)
, z ∈ U.

Since g ∈M∗
0 (α), we have Re

[
−zg

′(z)
g(z)

]
> α, so

Reψ(p(z), zp′(z); z) > 0, z ∈ U.

To be able to use Lemma 1.6 we need to verify the condition (1.2) for n = 1.

For ρ ∈ R, z ∈ U and σ ≤ −1
2
(1 + ρ2), we have

Reψ(iρ, σ; z) = δ − α+ (1− δ)σRe
1

γ − βδ − (1− δ)βρi
= (2.9)
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= δ − α+
(γ − βδ)(1− δ)σ

(γ − βδ)2 + (1− δ)2β2ρ2
.

Because (γ − βδ)(1− δ) > 0 and σ ≤ −1
2
(1 + ρ2), we obtain from (2.9) that

Reψ(iρ, σ; z) ≤ δ − α− (γ − βδ)(1− δ)
2[(γ − βδ)2 + (1− δ)2β2ρ2]

.

Thus,

Reψ(iρ, σ; z) ≤ − 1
D

(A+Bρ2), ρ ∈ R,

where
A = (γ − βδ)[2βδ2 − (1 + 2γ + 2αβ)δ + 2αγ + 1],

B = (1− δ)[2β2δ2 − β(1 + 2β + 2αβ)δ + 2αβ2 + γ],

D = 2[(γ − βδ)2 + (1− δ)2β2ρ2] > 0.

If γ >
1
8

and 0 < β < β1(α, γ), then ∆2 < 0, so B > 0 for every δ ∈ R. Moreover,

since β > 0, we have A ≥ 0 when δ ≤ δ1(α, β, γ). Hence, the condition (1.2) is satisfied

for δ ≤ δ1(α, β, γ) < 1 and applying Lemma 1.6 we obtain Re p(z) > 0, z ∈ U, when

δ ≤ δ1(α, β, γ).

From (2.8) and Re p(z) > 0, z ∈ U, when δ ≤ δ1(α, β, γ), we get G ∈M∗
0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
and δ ≤ δ(α, β, γ), where δ(α, β, γ) is given by (2.6),

then A ≥ 0 and B ≥ 0, therefore the condition (1.2) is satisfied. Applying Lemma

1.6 we obtain Re p(z) > 0, z ∈ U , for all δ ≤ δ(α, β, γ), so G ∈M∗
0 (δ(α, β, γ)). �

We see that if we consider, in the above theorem, the condition zG(z) =

zJα,β(g)(z) 6= 0, z ∈ U, we get:

Theorem 2.11. Let 0 ≤ α < 1, 0 < β < γ, g ∈M∗
0 (α) and G(z) = Jα,β(g)(z), where

the operator Jβ,γ is defined by (2.2). Suppose that zG(z) 6= 0, z ∈ U. Let’s denote

β1(α, γ) =
2
√

2γ(α− 1)2 + α− α− 1
2(α− 1)2

,

δ1(α, β, γ) =
2αβ + 2γ + 1−

√
(1 + 2αβ − 2γ)2 + 8(γ − β)

4β
,

δ2(α, β, γ) =
2αβ + 2β + 1−

√
(1 + 2αβ − 2β)2 + 8(β − γ)

4β
.
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If γ >
1
8

and β < β1(α, γ), then G ∈M∗
0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
, then G ∈M∗

0 (δ(α, β, γ)), where

δ(α, β, γ) = min{δ1(α, β, γ), δ2(α, β, γ)}.

The properties of the integral operator J1,γ , were studied by many authors

in different papers, from which we remember [1], [2], [6], [7], [8].
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