STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 3, September 2010

ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS FOR MEROMORPHIC STARLIKE FUNCTIONS

ALINA TOTOI

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Let M_0 be the class of meromorphic functions in \dot{U} of the form $g(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in \dot{U}$. For $\Phi, \varphi \in H[1, 1], \Phi(z)\varphi(z) \neq 0, z \in U$, $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$ and $g \in M_0$, we consider the integral operator $J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}: K \subset M_0 \to M_0$ defined by

$$J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(g)(z) = \left[\frac{\gamma-\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}}, \ z\in\dot{U}$$

The first result of this paper gives us the conditions for which $J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}$ will be well-defined. Furthermore, we study the properties of a function $G = J_{\beta,\gamma}(g)$, where $J_{\beta,\gamma} = J^{1,1}_{\beta,\beta,\gamma,\gamma}$, when $g \in M^*_0(\alpha,\delta)$. For the second result we consider $\beta < 0, \gamma - \beta > 0, \alpha \in [\alpha_0, 1)$, where $\alpha_0 = \max\left\{\frac{\beta + \gamma + 1}{2\beta}, \frac{\gamma}{\beta}\right\}$ and we find the order of starlikeness of the class $J_{\beta,\gamma}(M^*_0(\alpha))$. For the third result we consider $0 \le \alpha < 1, \ 0 < \beta < \gamma$ and we find some conditions for α, β, γ and $\delta = \delta(\alpha, \beta, \gamma)$ such that

$$J_{\beta,\gamma}[M_0^*(\alpha) \cap K_{\beta,\gamma}] \subset M_0^*(\delta).$$

1. Introduction and preliminaries

Let $U = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc in the complex plane, $\dot{U} = U \setminus \{0\}$ and $H(U) = \{f : U \to \mathbb{C} : f \text{ is holomorphic in } U\}.$

We will also use the following notations:

$$H[a,n] = \{ f \in H(U) : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \} \text{ for } a \in \mathbb{C}, \ n \in \mathbb{N}^*,$$
$$A_n = \{ f \in H(U) : f(z) = z + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \dots \}, \ n \in \mathbb{N}^*,$$

Received by the editors: 26.04.2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ meromorphic starlike functions, integral operators.

and for n = 1 we denote A_1 by A and this set is called the class of analytic functions normalized at the origin.

Let S^* be the class of normalized starlike functions on U, i.e.

$$S^* = \left\{ f \in A : \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in U \right\}.$$

We denote by M_0 the class of meromorphic functions in \dot{U} of the form

$$g(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots, \ z \in \dot{U}.$$

Let

$$M_0^* = \left\{ g \in M_0 : \operatorname{Re}\left[-\frac{zg'(z)}{g(z)} \right] > 0, \ z \in U \right\}$$

be called the class of meromorphic starlike functions in \dot{U} .

We note that if f is a normalized starlike function in U, then the function $g = \frac{1}{f}$ belongs to the class M_0^* .

For $\alpha < 1, \, \delta > 1$ let

$$M_0^*(\alpha) = \left\{ g \in M_0 : \operatorname{Re}\left[-\frac{zg'(z)}{g(z)} \right] > \alpha, \ z \in U \right\},$$
$$M_0^*(\alpha, \delta) = \left\{ g \in M_0 : \alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)} \right] < \delta, \ z \in U \right\}$$

Definition 1.1. [3, p.4], [4, p.45] Let $f, g \in H(U)$. We say that the function f is subordinate to the function g, and we denote this by $f(z) \prec g(z)$, if there is a function $w \in H(U)$, with w(0) = 0 and |w(z)| < 1, $z \in U$, such that

$$f(z) = g[w(z)], \ z \in U.$$

Remark 1.2. If $f(z) \prec g(z)$, then f(0) = g(0) and $f(U) \subseteq g(U)$.

Theorem 1.3. [3, p.4], [4, p.46] Let $f, g \in H(U)$ and let g be a univalent function in U. Then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

Definition 1.4. [3, p. 46], [4, p.228] Let $c \in \mathbb{C}$ with $\operatorname{Re} c > 0$ and $n \in \mathbb{N}^*$. We consider

$$C_n = C_n(c) = \frac{n}{\operatorname{Re} c} \left[|c| \sqrt{1 + \frac{2\operatorname{Re} c}{n}} + \operatorname{Im} c \right].$$

If the univalent function $R: U \to \mathbb{C}$ is given by $R(z) = \frac{2C_n z}{1-z^2}$, then we will denote by $R_{c,n}$ the "Open Door" function, defined as

$$R_{c,n}(z) = R\left(\frac{z+b}{1+\bar{b}z}\right) = 2C_n \frac{(z+b)(1+\bar{b}z)}{(1+\bar{b}z)^2 - (z+b)^2}$$

where $b = R^{-1}(c)$.

Theorem 1.5. [3, Theorem 2.5c.] Let $\Phi, \varphi \in H[1, n]$ with $\Phi(z) \neq 0, \varphi(z) \neq 0$, for $z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\alpha + \delta) > 0$. Let the function $f(z) = z + a_{n+1}z^{n+1} + \cdots \in A_n$ and suppose that

$$\alpha \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\alpha+\delta,n}(z)$$

If $F = I^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(f)$ is defined by

$$F(z) = I^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(f)(z) = \left[\frac{\beta+\gamma}{z^{\gamma}\Phi(z)}\int_{0}^{z}f^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}},$$
(1.1)

then $F \in A_n$ with $\frac{F(z)}{z} \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta\frac{zF'(z)}{F(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

All powers in (1.1) are principal ones.

Lemma 1.6. [3, Theorem 2.3i.], [4, p.209] Let $\psi : \mathbb{C}^2 \times U \to \mathbb{C}$ be a function that satisfies the condition

$$\operatorname{Re}\psi(\rho i,\sigma;z) \le 0\,,\tag{1.2}$$

,

when $\rho, \sigma \in \mathbb{R}, \sigma \leq -\frac{n}{2}(1+\rho^2), z \in U, n \geq 1.$ If $p \in H[1,n]$ and

$$\operatorname{Re}\psi(p(z), zp'(z); z) > 0, \quad z \in U,$$

then

$$\operatorname{Re} p(z) > 0, \quad z \in U.$$

Theorem 1.7. [3, Theorem 3.2a.], [4, p.247] Let $\beta, \gamma \in \mathbb{C}$, $\beta \neq 0$ and let h be a convex function on U such that $\operatorname{Re} [\beta h(z) + \gamma] > 0$, $z \in U$. If $p \in H[h(0), n]$ and

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec h(z),$$

then $p(z) \prec h(z)$.

Theorem 1.8. [5], [4, p.299](the order of starlikeness of the class $I_{\beta,\gamma}(S^*(\alpha))$) Let $\beta > 0$, $\gamma + \beta > 0$ and consider the integral operator $I_{\beta,\gamma}$ defined by

$$I_{\beta,\gamma}(f)(z) = \left[\frac{\gamma+\beta}{z^{\gamma}}\int_0^z t^{\gamma-1}f^{\beta}(t)dt\right]^{\frac{1}{\beta}}$$

If $\alpha \in [\alpha_0, 1)$ where $\alpha_0 = \max\left\{\frac{\beta - \gamma - 1}{2\beta}, -\frac{\gamma}{\beta}\right\}$, then the order of starlikeness of the class $I_{\beta,\gamma}(S^*(\alpha))$ is given by

$$\delta(\alpha;\beta,\gamma) = \frac{1}{\beta} \left[\frac{\gamma+\beta}{_2F_1(1,2\beta(1-\alpha),\gamma+1+\beta;\frac{1}{2})} - \gamma \right],$$

where $_2F_1$ represents the hypergeometric function.

2. Main results

Let $\Phi, \varphi \in H[1, 1]$ with $\Phi(z)\varphi(z) \neq 0, z \in U$ and let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0$. The first result of this section is a corollary of Theorem 1.5 and gives us the conditions for which the integral operator $J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}: K \subset M_0 \to M_0$,

$$J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(g)(z) = \left[\frac{\gamma-\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}},$$

is well-defined.

Theorem 2.1. Let $\Phi, \varphi \in H[1,1]$ with $\Phi(z)\varphi(z) \neq 0, z \in U$. Let $\alpha, \beta, \gamma, \delta \in \mathbb{C}$ with $\beta \neq 0, \alpha + \gamma = \beta + \delta$ and $\operatorname{Re}(\gamma - \beta) > 0$. If $g \in M_0$ and

$$\alpha \frac{zg'(z)}{g(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\delta-\alpha,1}(z), \qquad (2.1)$$

then

$$G(z) = J^{\Phi,\varphi}_{\alpha,\beta,\gamma,\delta}(g)(z) = \left[\frac{\gamma-\beta}{z^{\gamma}\Phi(z)}\int_{0}^{z}g^{\alpha}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta}} \in M_{0},$$

with $zG(z) \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

All powers are chosen as principal ones.

Proof. We denote $\alpha_1 = -\alpha$, $\beta_1 = -\beta$, so we have $\gamma + \beta_1 = \delta + \alpha_1$, and $\operatorname{Re}(\gamma + \beta_1) > 0$. We remark that from (2.1) we have $zg(z) \neq 0, z \in U$.

We know that $g \in M_0$ with $zg(z) \neq 0, z \in U$, if and only if $f = \frac{1}{g} \in A_1$ with $\frac{f(z)}{z} \neq 0, \ z \in U. \ \text{It is also easy to see that} \ \frac{zg'(z)}{g(z)} = -\frac{zf'(z)}{f(z)}, \ z \in U.$ Using these new potentions we obtain

Using these new notations we obtain

$$\alpha_1 \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\delta + \alpha_1, 1}(z), \ z \in U_{\delta}$$

and applying Theorem 1.5 we have

$$F(z) = I^{\Phi,\varphi}_{\alpha_1,\beta_1,\gamma,\delta}(f)(z) = \left[\frac{\beta_1 + \gamma}{z^{\gamma}\Phi(z)} \int_0^z f^{\alpha_1}(t)\varphi(t)t^{\delta-1}dt\right]^{\frac{1}{\beta_1}} \in A_1,$$

with $\frac{F(z)}{z} \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta_1 \frac{zF'(z)}{F(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

Therefore, we have $G(z) = \frac{1}{F(z)} \in M_0$ with $zG(z) \neq 0$ and, because

$$\frac{zG'(z)}{G(z)} = -\frac{zF'(z)}{F(z)}, \ z \in U_{\varepsilon}$$

we also have

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)} + \frac{z\Phi'(z)}{\Phi(z)} + \gamma\right] > 0, \ z \in U.$$

We next consider a special case of Theorem 2.1. If we let $\Phi \equiv \varphi \equiv 1$, $\alpha = \beta, \gamma = \delta$ and if we use the notation $J_{\beta,\gamma}$ instead of $J_{\beta,\beta,\gamma,\gamma}^{1,1}$, we obtain: **Corollary 2.2.** Let $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma - \beta) > 0$. If $g \in M_0$ and

$$\beta \frac{zg'(z)}{g(z)} + \gamma \prec R_{\gamma-\beta,1}(z),$$

then

$$G(z) = J_{\beta,\gamma}(g)(z) = \left[\frac{\gamma - \beta}{z^{\gamma}} \int_0^z g^{\beta}(t) t^{\gamma - 1} dt\right]^{\frac{1}{\beta}} \in M_0,$$
(2.2)

with $zG(z) \neq 0, z \in U$, and

$$\operatorname{Re}\left[\beta\frac{zG'(z)}{G(z)}+\gamma\right]>0,\,z\in U$$

Remark 2.3. 1. Let us define the classes $K_{\beta,\gamma}$ as

$$K_{\beta,\gamma} = \left\{ g \in M_0 : \gamma + \beta \frac{zg'(z)}{g(z)} \prec R_{\gamma-\beta,1}(z), \, z \in U \right\}.$$

From Corollary 2.2, we have $J_{\beta,\gamma}: K_{\beta,\gamma} \to M_0$ with $zJ_{\beta,\gamma}(g)(z) \neq 0, z \in U$, and

$$\operatorname{Re}\left[\gamma+\beta\frac{zJ_{\beta,\gamma}'(g)(z)}{J_{\beta,\gamma}(g)(z)}\right]>0,\ z\in U.$$

2. We denote

$$\tilde{K}_{\beta,\gamma} = \left\{ g \in M_0 : \operatorname{Re}\left[\gamma + \beta \frac{zg'(z)}{g(z)}\right] > 0, \, z \in U \right\}$$

Using the above corollary we have $J_{\beta,\gamma}(K_{\beta,\gamma}) \subset \tilde{K}_{\beta,\gamma}$, so $J_{\beta,\gamma}(\tilde{K}_{\beta,\gamma}) \subset \tilde{K}_{\beta,\gamma}$, where $\beta, \gamma \in \mathbb{C}$ with $\beta \neq 0$ and $\operatorname{Re}(\gamma - \beta) > 0$.

3. Let $\beta < 0, \gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > \beta$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha < 1$. Then, from $J_{\beta,\gamma}(\tilde{K}_{\beta,\gamma}) \subset \tilde{K}_{\beta,\gamma}$, we deduce $J_{\beta,\gamma}(M_0^*(\alpha)) \subset M_0^*\left(\frac{\operatorname{Re} \gamma}{\beta}\right)$.

It's easy to see that from

$$G(z) = \left[\frac{\gamma - \beta}{z^{\gamma}} \int_0^z t^{\gamma - 1} g^{\beta}(t) dt\right]^{\frac{1}{\beta}}, \, z \in \dot{U},$$

we obtain

$$p(z) + \frac{zp'(z)}{\gamma - \beta p(z)} = -\frac{zg'(z)}{g(z)}, \text{ where } p(z) = -\frac{zG'(z)}{G(z)}, z \in U.$$
 (2.3)

Next we will study the properties of the image of a function $g \in M_0^*(\alpha, \delta)$ through the integral operator $J_{\beta,\gamma}$ defined by (2.2).

Theorem 2.4. Let $\beta > 0, \gamma \in \mathbb{C}$ and $0 \le \alpha < 1 < \delta \le \frac{\operatorname{Re} \gamma}{\beta}$. If $g \in M_0^*(\alpha, \delta)$, then $G = J_{\beta, \gamma}(g) \in M_0^*(\alpha, \delta)$.

Proof. We know that $g \in M_0^*(\alpha, \delta)$ is equivalent to

$$\alpha < \operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] < \delta, \ z \in U,$$

so,

$$\operatorname{Re} \gamma - \beta \delta < \operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] < \operatorname{Re} \gamma - \beta \alpha, \ z \in U, \quad \text{when} \quad \beta > 0.$$

Because $\delta \leq \frac{\operatorname{Re} \gamma}{\beta}$ we get $\operatorname{Re} \left[\gamma + \beta \frac{zg'(z)}{g(z)} \right] > 0, z \in U$, and using Corollary 2.2, we obtain that $G = J_{\beta,\gamma}(g) \in M_0, zG(z) \neq 0, z \in U$, and $\operatorname{Re} \left[\gamma + \beta \frac{zG'(z)}{G(z)} \right] > 0, z \in U$.

ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS

From (2.3) we know that

$$p(z) + \frac{zp'(z)}{\gamma - \beta p(z)} = -\frac{zg'(z)}{g(z)}, \quad \text{where} \quad p(z) = -\frac{zG'(z)}{G(z)}.$$

Since $G \in M_0$ with $zG(z) \neq 0$, $z \in U$, we have $p(z) = -\frac{zG'(z)}{G(z)} \in H[1,1]$. It's not difficult to see that there is a convex function q on U such that $q(U) = \{z \in \mathbb{C} : \alpha < \text{Re } z < \delta\}$ and q(0) = 1, so

$$g \in M_0^*(\alpha, \delta) \Rightarrow -\frac{zg'(z)}{g(z)} \prec q(z).$$

Now we have

$$p(z) + \frac{zp'(z)}{\gamma - \beta p(z)} \prec q(z)$$
, with q convex on U, $q(0) = 1$

We want to apply Theorem 1.7 to the above differential subordination, so we need to see that Re $[\gamma - \beta q(z)] > 0, z \in U$.

Since $\beta > 0$, we obtain from $\alpha < \operatorname{Re} q(z) < \delta$, $z \in U$, that

$$\operatorname{Re} \gamma - \beta \delta < \operatorname{Re} [\gamma - \beta q(z)] < \operatorname{Re} \gamma - \beta \alpha, \ z \in U.$$

Because $\delta \leq \frac{\operatorname{Re} \gamma}{\beta}$ we have $\operatorname{Re} [\gamma - \beta q(z)] > 0, z \in U$, and using Theorem 1.7 we obtain $p(z) \prec q(z)$, which is equivalent to

$$-\frac{zG'(z)}{G(z)} \prec q(z), \ z \in U.$$

$$(2.4)$$

Since $G \in M_0$, we get from (2.4) that $G \in M_0^*(\alpha, \delta)$.

Taking $\beta=1$ in the above theorem we obtain:

Corollary 2.5. Let $\gamma \in \mathbb{C}$ and $0 \le \alpha < 1 < \delta \le \operatorname{Re} \gamma$. If $g \in M_0^*(\alpha, \delta)$, then

$$G = J_{1,\gamma}(g) = \frac{\gamma - 1}{z^{\gamma}} \int_0^z t^{\gamma - 1} g(t) dt \in M_0^*(\alpha, \delta).$$

Theorem 2.6. Let $\beta < 0, \gamma \in \mathbb{C}$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha < 1 < \delta$. If $g \in M_0^*(\alpha, \delta)$, then $G = J_{\beta,\gamma} \in M_0^*(\alpha, \delta)$.

Proof. From Remark 2.3 item 3., we have $J_{\beta,\gamma}(M_0^*(\alpha)) \subset M_0^*\left(\frac{\operatorname{Re}\gamma}{\beta}\right)$, hence $G = J_{\beta,\gamma}(g) \in M_0^*\left(\frac{\operatorname{Re}\gamma}{\beta}\right)$. Since $G \in M_0^*\left(\frac{\operatorname{Re}\gamma}{\beta}\right)$, we have $G \in M_0$ and $zG(z) \neq 0$, $z \in U$, so $-\frac{zG'(z)}{G(z)} \in H[1,1]$.

Because $g \in M_0^*(\alpha, \delta)$ and

$$p(z) + \frac{zp'(z)}{\gamma - \beta p(z)} = -\frac{zg'(z)}{g(z)}, \quad \text{where} \quad p(z) = -\frac{zG'(z)}{G(z)},$$

we will use the same idea as at the proof of Theorem 2.4. So, we have to see that $\operatorname{Re} [\gamma - \beta q(z)] > 0, z \in U$, where q is convex on U, $q(0) = 1, q(U) = \{z \in \mathbb{C} : \alpha < \operatorname{Re} z < \delta\}$.

 $\begin{array}{l} \operatorname{From}\,\operatorname{Re} q(z)>\alpha,\,z\in U,\, \text{we obtain}\,\operatorname{Re} \gamma-\beta\operatorname{Re} q(z)>\operatorname{Re} \gamma-\alpha\beta\geq 0,\,z\in U,\\ \text{when }\alpha\geq \frac{\operatorname{Re} \gamma}{\beta},\,\beta<0. \end{array} \end{array}$

Applying Theorem 1.7 to the differential subordination

$$p(z) + \frac{zp'(z)}{\gamma - \beta p(z)} \prec q(z), \, z \in U,$$

we obtain $p(z) \prec q(z)$, which is equivalent to

$$-\frac{zG'(z)}{G(z)} \prec q(z), \ z \in U.$$

$$(2.5)$$

Since $G \in M_0$, we get from (2.5) that $G \in M_0^*(\alpha, \delta)$.

Remark 2.7. If we consider $\delta \to \infty$ in the above theorem, we obtain that for $\beta < 0, \gamma \in \mathbb{C}, \beta < \operatorname{Re} \gamma$ and $\frac{\operatorname{Re} \gamma}{\beta} \leq \alpha < 1$,

$$g \in M_0^*(\alpha) \Rightarrow G = J_{\beta,\gamma}(g) \in M_0^*(\alpha).$$

Definition 2.8. For a given number $\alpha \in \left[\frac{\operatorname{Re} \gamma}{\beta}, 1\right)$, where $\beta < 0, \gamma \in \mathbb{C}, \beta < \operatorname{Re} \gamma$, we define the order of starlikeness of the class $J_{\beta,\gamma}(M_0^*(\alpha))$ as the biggest number $\mu = \mu(\alpha; \beta, \gamma)$ such that $J_{\beta,\gamma}(M_0^*(\alpha)) \subset M_0^*(\mu)$.

Theorem 2.9. (the order of starlikeness of the class $J_{\beta,\gamma}(M_0^*(\alpha))$) Let $\beta < 0, \gamma - \beta > 0$ and let $J_{\beta,\gamma}$ be given by (2.2). If $\alpha \in [\alpha_0, 1)$, where $\alpha_0 = \max\left\{\frac{\beta + \gamma + 1}{2\beta}, \frac{\gamma}{\beta}\right\}$, then the order of starlikeness of the class $J_{\beta,\gamma}(M_0^*(\alpha))$ is given by

$$\mu(\alpha;\beta,\gamma) = -\frac{1}{\beta} \left[\frac{\gamma - \beta}{{}_2F_1(1,2\beta(\alpha-1),\gamma+1-\beta;\frac{1}{2})} - \gamma \right],$$

where $_2F_1$ represents the hypergeometric function.

Proof. We know that if $g \in M_0$ with $zg(z) \neq 0, z \in U$, then $\frac{1}{g} \in A$. It's not difficult to see that

$$J_{\beta,\gamma}(g) = \frac{1}{I_{-\beta,\gamma}\left(\frac{1}{g}\right)}, \, \beta < 0, \, g \in M_0^*(\alpha).$$

Using the fact that $g \in M_0^*(\alpha)$ is equivalent to $\frac{1}{g} \in S^*(\alpha)$, we obtain from Theorem 1.8 that

$$I_{-\beta,\gamma}(S^*(\alpha)) \subset S^*(\delta(\alpha; -\beta, \gamma)),$$

 \mathbf{SO}

$$J_{\beta,\gamma}(M_0^*(\alpha)) \subset M_0^*(\delta(\alpha; -\beta, \gamma)).$$

It's easy to prove that $\delta(\alpha; -\beta, \gamma)$ is the largest number μ such that $J_{\beta,\gamma}(M_0^*(\alpha)) \subset M_0^*(\mu)$, so the order of starlikeness of the class $J_{\beta,\gamma}(M_0^*(\alpha))$ is $\mu(\alpha; \beta, \gamma) = \delta(\alpha; -\beta, \gamma)$.

Further we will find some conditions for α , β , γ and $\delta = \delta(\alpha, \beta, \gamma)$ such that

$$J_{\beta,\gamma}[M_0^*(\alpha) \cap K_{\beta,\gamma}] \subset M_0^*(\delta).$$

Theorem 2.10. Let $0 \le \alpha < 1$ and $0 < \beta < \gamma$. Let's denote

$$\beta_1(\alpha,\gamma) = \frac{2\sqrt{2\gamma(\alpha-1)^2 + \alpha} - \alpha - 1}{2(\alpha-1)^2},$$

$$\delta_1(\alpha,\beta,\gamma) = \frac{2\alpha\beta + 2\gamma + 1 - \sqrt{(1+2\alpha\beta-2\gamma)^2 + 8(\gamma-\beta)}}{4\beta},$$

$$\delta_2(\alpha,\beta,\gamma) = \frac{2\alpha\beta + 2\beta + 1 - \sqrt{(1+2\alpha\beta-2\beta)^2 + 8(\beta-\gamma)}}{4\beta}.$$

$$If \gamma > \frac{1}{8} \text{ and } \beta < \beta_1(\alpha, \gamma), \text{ then } J_{\beta,\gamma}[M_0^*(\alpha) \cap K_{\beta,\gamma}] \subset M_0^*(\delta_1(\alpha, \beta, \gamma)).$$
$$If \gamma \le \frac{1}{8} \text{ or } \begin{cases} \gamma > \frac{1}{8} \\ \beta \ge \beta_1(\alpha, \gamma) \end{cases}, \text{ then } J_{\beta,\gamma}[M_0^*(\alpha) \cap K_{\beta,\gamma}] \subset M_0^*(\delta(\alpha, \beta, \gamma)), \text{ where} \\ \delta(\alpha, \beta, \gamma) = \min\{\delta_1(\alpha, \beta, \gamma), \delta_2(\alpha, \beta, \gamma)\}. \end{cases}$$
(2.6)

The operator $J_{\beta,\gamma}$ is defined by (2.2).

Proof. We remark that $\beta_1(\alpha, \gamma)$ is a real number and it is the greatest root for the equation

$$\Delta_2 = (1 + 2\alpha\beta - 2\beta)^2 + 8(\beta - \gamma) = 4(\alpha - 1)^2\beta^2 + 4\beta(\alpha + 1) + 1 - 8\gamma = 0,$$
237

hence $\Delta_2 \ge 0$, when $\beta \ge \beta_1(\alpha, \gamma)$.

It's not difficult to see that

$$\beta_1(\alpha,\gamma) \ge 0 \Leftrightarrow (8\gamma-1)(\alpha-1)^2 \ge 0 \Leftrightarrow \gamma \ge \frac{1}{8}.$$

We next verify that the number $\delta_1(\alpha, \beta, \gamma)$ is less than 1. It's obvious that $\delta_1(\alpha, \beta, \gamma)$ is a real number since $\gamma - \beta > 0$. Further we will use the notation δ_1 instead of $\delta_1(\alpha, \beta, \gamma)$.

We have $\delta_1 < 1$ if and only if

$$2\alpha\beta + 2\gamma + 1 - 4\beta < \sqrt{(1 + 2\alpha\beta - 2\gamma)^2 + 8(\gamma - \beta)}.$$
(2.7)

If $2\alpha\beta + 2\gamma + 1 - 4\beta < 0$ then the inequality (2.7) is fulfilled.

If $2\alpha\beta + 2\gamma + 1 - 4\beta \ge 0$, we use the square of the inequality (2.7) and after a simple computation, we obtain that (2.7) is equivalent to $(\beta - \gamma)(1 - \alpha) < 0$ which is true for $\beta < \gamma$ and $\alpha \in [0, 1)$. Thus, we have $\delta_1 < 1$.

Since $g \in K_{\beta,\gamma}$, with $\beta < \gamma$, we have from Corollary 2.2 that $zG(z) = zJ_{\beta,\gamma}(g)(z) \neq 0, z \in U$. Now let us put

$$-\frac{zG'(z)}{G(z)} = (1-\delta)p(z) + \delta, \ z \in U,$$
(2.8)

where $p \in H(U)$ with p(0) = 1 and $\delta < 1$. We remark that the function p also depends on δ .

Using (2.8) and the logarithmic differential for (2.2), we obtain

$$-\frac{zg'(z)}{g(z)} - \alpha = (1-\delta)p(z) + \delta - \alpha + \frac{(1-\delta)zp'(z)}{\gamma - \beta\delta - (1-\delta)\beta p(z)}, \ z \in U.$$

Let us denote

$$\psi(p(z), zp'(z); z) = (1 - \delta)p(z) + \delta - \alpha + \frac{(1 - \delta)zp'(z)}{\gamma - \beta\delta - (1 - \delta)\beta p(z)}, z \in U.$$

Since $g \in M_0^*(\alpha)$, we have $\operatorname{Re}\left[-\frac{zg'(z)}{g(z)}\right] > \alpha$, so
 $\operatorname{Re}\psi(p(z), zp'(z); z) > 0, z \in U.$

To be able to use Lemma 1.6 we need to verify the condition (1.2) for n = 1. For $\rho \in \mathbb{R}$, $z \in U$ and $\sigma \leq -\frac{1}{2}(1 + \rho^2)$, we have

$$\operatorname{Re}\psi(i\rho,\sigma;z) = \delta - \alpha + (1-\delta)\sigma\operatorname{Re}\frac{1}{\gamma - \beta\delta - (1-\delta)\beta\rho i} =$$
(2.9)

ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS

$$= \delta - \alpha + \frac{(\gamma - \beta \delta)(1 - \delta)\sigma}{(\gamma - \beta \delta)^2 + (1 - \delta)^2 \beta^2 \rho^2}.$$

Because $(\gamma - \beta \delta)(1 - \delta) > 0$ and $\sigma \le -\frac{1}{2}(1 + \rho^2)$, we obtain from (2.9) that
 $\operatorname{Re} \psi(i\rho, \sigma; z) \le \delta - \alpha - \frac{(\gamma - \beta \delta)(1 - \delta)}{2[(\gamma - \beta \delta)^2 + (1 - \delta)^2 \beta^2 \rho^2]}.$

Thus,

$$\operatorname{Re}\psi(i\rho,\sigma;z)\leq -\frac{1}{D}(A+B\rho^2),\,\rho\in\mathbb{R},$$

where

$$A = (\gamma - \beta \delta)[2\beta \delta^2 - (1 + 2\gamma + 2\alpha\beta)\delta + 2\alpha\gamma + 1],$$

$$B = (1 - \delta)[2\beta^2 \delta^2 - \beta(1 + 2\beta + 2\alpha\beta)\delta + 2\alpha\beta^2 + \gamma]$$

$$D = 2[(\gamma - \beta \delta)^2 + (1 - \delta)^2 \beta^2 \rho^2] > 0.$$

If $\gamma > \frac{1}{8}$ and $0 < \beta < \beta_1(\alpha, \gamma)$, then $\Delta_2 < 0$, so B > 0 for every $\delta \in \mathbb{R}$. Moreover, since $\beta > 0$, we have $A \ge 0$ when $\delta \le \delta_1(\alpha, \beta, \gamma)$. Hence, the condition (1.2) is satisfied for $\delta \le \delta_1(\alpha, \beta, \gamma) < 1$ and applying Lemma 1.6 we obtain $\operatorname{Re} p(z) > 0$, $z \in U$, when $\delta \le \delta_1(\alpha, \beta, \gamma)$.

From (2.8) and $\operatorname{Re} p(z) > 0, z \in U$, when $\delta \leq \delta_1(\alpha, \beta, \gamma)$, we get $G \in M_0^*(\delta_1(\alpha, \beta, \gamma))$. If $\gamma \leq \frac{1}{8}$ or $\begin{cases} \gamma > \frac{1}{8} \\ \beta \geq \beta_1(\alpha, \gamma) \end{cases}$ and $\delta \leq \delta(\alpha, \beta, \gamma)$, where $\delta(\alpha, \beta, \gamma)$ is given by (2.6), then $A \geq 0$ and $B \geq 0$, therefore the condition (1.2) is satisfied. Applying Lemma 1.6 we obtain $\operatorname{Re} p(z) > 0, z \in U$, for all $\delta \leq \delta(\alpha, \beta, \gamma)$, so $G \in M_0^*(\delta(\alpha, \beta, \gamma))$. \Box We see that if we consider, in the above theorem, the condition zG(z) =

we see that if we consider, in the above theorem, the condition $zG(z) = zJ_{\alpha,\beta}(g)(z) \neq 0, z \in U$, we get:

Theorem 2.11. Let $0 \le \alpha < 1$, $0 < \beta < \gamma$, $g \in M_0^*(\alpha)$ and $G(z) = J_{\alpha,\beta}(g)(z)$, where the operator $J_{\beta,\gamma}$ is defined by (2.2). Suppose that $zG(z) \ne 0$, $z \in U$. Let's denote

$$\beta_1(\alpha,\gamma) = \frac{2\sqrt{2\gamma(\alpha-1)^2 + \alpha} - \alpha - 1}{2(\alpha-1)^2},$$

$$\delta_1(\alpha,\beta,\gamma) = \frac{2\alpha\beta + 2\gamma + 1 - \sqrt{(1+2\alpha\beta-2\gamma)^2 + 8(\gamma-\beta)}}{4\beta},$$

$$\delta_2(\alpha,\beta,\gamma) = \frac{2\alpha\beta + 2\beta + 1 - \sqrt{(1+2\alpha\beta-2\beta)^2 + 8(\beta-\gamma)}}{4\beta},$$

$$\begin{split} &If \, \gamma > \frac{1}{8} \ and \ \beta < \beta_1(\alpha, \gamma), \ then \ G \in M_0^*(\delta_1(\alpha, \beta, \gamma)). \\ &If \, \gamma \leq \frac{1}{8} \ or \left\{ \begin{array}{l} \gamma > \frac{1}{8} \\ \beta \geq \beta_1(\alpha, \gamma) \end{array}, \ then \ G \in M_0^*(\delta(\alpha, \beta, \gamma)), \ where \\ \\ &\delta(\alpha, \beta, \gamma) = \min\{\delta_1(\alpha, \beta, \gamma), \delta_2(\alpha, \beta, \gamma)\}. \end{split} \right. \end{split}$$

The properties of the integral operator $J_{1,\gamma}$, were studied by many authors in different papers, from which we remember [1], [2], [6], [7], [8].

References

- Bajpai, S. K., A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures Appl., 22 (1977), 295-297.
- [2] Goel, R. M., Sohi, N. S., On a class of meromorphic functions, Glas. Mat. Ser. III, 17(37) (1981), 19-28.
- [3] Miller, S. S., Mocanu, P. T., Differential subordinations. Theory and applications, Marcel Dekker Inc. New York, Basel, 2000.
- [4] Mocanu, P. T., Bulboacă, T., Sălăgean, G. S., The geometric theory of univalent functions, (in Romanian), Casa Cărții de Știință, Cluj-Napoca, 2006.
- [5] Mocanu, P. T., Ripeanu, D., Şerb, I., The order of starlikeness of certain integral operators, Mathematica (Cluj), 23(46) (1981), no. 2, 225-230.
- [6] Mocanu, P. T., Sălăgean, G. S., Integral operators and meromorphic starlike functions, Mathematica (Cluj), 32(55) (1990), no. 2, 147-152.
- [7] Reddy, T. R., Juneja, O. P., Integral operators on a class of meromorphic functions, C. R. Acad. Bulgare Sci., 40 (1987), 21-23.
- [8] Sălăgean, G. S., Meromorphic starlike univalent functions, Babeş Bolyai Univ., Fac. Math. and Phys. Res. Sem., Itinerant Seminar on Functional Equations, Approximations and Convexity, Preprint 7 (1986), 261-266.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE UNIVERSITY "LUCIAN BLAGA" SIBIU, ROMANIA *E-mail address*: totoialina@yahoo.com