STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 3, September 2010

SOME STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED BY SĂLĂGEAN DIFFERENTIAL OPERATOR

ADELA OLIMPIA TĂUT

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. S. S. Miller and P. T. Mocanu introduced the notion of differential superordination as a dual concept of differential subordination. The notion of strong differential subordination was introduced by J. A. Antonino and S. Romaguera. By using the Sălăgean differential operator we introduce a class of holomorphic functions denoted by $S_n^m(\alpha)$, and obtain some strong subordinations results.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane,

$$U = \{ z \in \mathbb{C}; \ |z| < 1 \}$$
(1.1)

$$\overline{U} = \{ z \in \mathbb{C}; \ |z| \le 1 \}$$

$$(1.2)$$

the closed unit disc of the complex plane.

In the paper [3], Georgia I. Oros defined the classes $\mathcal{H}(U \times \overline{U})$ denote the class of analytic functions in $U \times \overline{U}$,

$$A_{\zeta}^{*} = \{ f \in \mathcal{H}(U \times \overline{U}) \mid f(z,\zeta) = z + a_{2}(\zeta)z^{2} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$
(1.3)

$$A_{n\zeta}^* = \{ f \in \mathcal{H}(U \times \overline{U}) \mid f(z,\zeta) = z + a_{n+1}(\zeta)z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \},$$
(1.4)

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 30C80, 30C45, 30A20.

Key words and phrases. differential superordination, strong differential superordination, univalent function, subordinant, best subordinant, differential operator.

ADELA OLIMPIA TĂUT

for
$$n = 1$$
, $A_{n\zeta}^* = A_{\zeta}^*$, with $a_k(\zeta)$ holomorphic functions in \overline{U} , $k \ge 2$,

$$\mathcal{H}^*[a,n,\zeta] = \{ f \in \mathcal{H}(U \times \overline{U}) \mid f(z,\zeta) = a + a_n(\zeta) z^n + a_{n+1}(\zeta) z^{n+1} + \dots, \ z \in U, \ \zeta \in \overline{U} \}$$

$$(1.5)$$

where $a_k(\zeta)$ holomorphic functions in \overline{U} , $k \ge n$, and let

$$\mathcal{H}_u(U) = \{ f \in \mathcal{H}^*[a, n, \zeta] \mid f(z, \zeta) \text{ univalent in } U \text{ for all } \zeta \in \overline{U} \},$$
(1.6)

$$K^* = \left\{ f \in \mathcal{H}^*[a, n, \zeta] \mid \operatorname{Re} \, \frac{zf''(z, \zeta)}{f'(z, \zeta)} + 1 > 0, \ z \in U \text{ for all } \zeta \in \overline{U} \right\}$$
(1.7)

the class of convex functions,

$$S^* = \left\{ f \in \mathcal{H}^*[a, n, \zeta] \mid \operatorname{Re} \frac{zf'(z, \zeta)}{f(z, \zeta)} > 0, \ z \in U \text{ for all } \zeta \in \overline{U} \right\}$$
(1.8)

the class of starlike functions.

Definition 1.1. [4] Let $f(z,\zeta)$, $H(z,\zeta)$ analytic in $U \times \overline{U}$. The function $f(z,\zeta)$ is said to be strongly subordinate to $H(z,\zeta)$, or $H(z,\zeta)$ is said to be strongly superordinate to $f(z,\zeta)$, if there exists a function w analytic in U, with w(0) = 0, and |w(z)| < 1 such that $f(z,\zeta) = H(w(z),\zeta)$ for all $\zeta \in \overline{U}$. In such a case we write $f(z,\zeta) \prec \prec H(z,\zeta)$, $z \in U, \zeta \in \overline{U}$.

Remark 1.2. [4] (i) Since $f(z,\zeta)$ is analytic in $U \times \overline{U}$, for all $\zeta \in \overline{U}$ and univalent in U, for all $\zeta \in \overline{U}$, Definition 1.1 is equivalent to $f(0,\zeta) = H(0,\zeta)$ for all $\zeta \in \overline{U}$ and $f(U \times \overline{U}) \subset H(U \times \overline{U})$.

(ii) If $H(z,\zeta) \equiv H(z)$ and $f(z,\zeta) \equiv f(z)$ then strong subordination becomes usual notion of subordination.

Lemma 1.3. [2, page 71] Let $h(z, \zeta)$ be a convex function with $h(0, \zeta) = a$ for every $\zeta \in \overline{U}$ and let $\gamma \in \mathbb{C}^*$ be a complex number with Re $\gamma \geq 0$. If $p \in \mathcal{H}^*[a, n, \zeta]$ and

$$p(z,\zeta) + \frac{1}{\gamma} z p'(z,\zeta) \prec \prec h(z,\zeta)$$
(1.9)

then $p(z,\zeta) \prec \prec q(z,\zeta) \prec \prec h(z,\zeta)$ where

$$g(z,\zeta) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t,\zeta) t^{(\gamma/n)-1} dt.$$
(1.10)

The function $g(z,\zeta)$ is convex and is the best dominant.

Lemma 1.4. [1] Let $g(z,\zeta)$ be a convex function in U ,for all $\zeta \in \overline{U}$ and let

$$h(z,\zeta) = g(z,\zeta) + n\alpha g'(z,\zeta), \qquad (1.11)$$

where $\alpha > 0$ and n is a positive integer. If

$$p(z,\zeta) = g(0,\zeta) + p_n(\zeta)z^n + \dots$$

is holomorphic in U, for all $\zeta \in \overline{U}$ and

$$p(z,\zeta) + \alpha z p'(z,\zeta) \prec \prec h(z,\zeta) \tag{1.12}$$

then

$$p(z,\zeta) \prec g(z,\zeta) \tag{1.13}$$

and this result is sharp.

Definition 1.5. [5] For $f \in A^*_{\zeta}$, $n \in \mathbb{N}^* \cup \{0\}$, the operator $S^n f$ is defined by

$$\begin{split} S^n &: A^*_{\zeta} \to A^*_{\zeta} \\ S^0 f(z,\zeta) &= f(z,\zeta) \\ S^1 f(z,\zeta) &= z f'(z,\zeta) \\ & \cdots \\ S^{n+1} f(z,\zeta) &= z [S^n f(z,\zeta)]', \ z \in U, \ \zeta \in \overline{U}. \end{split}$$

Remark 1.6. If $f \in A^*_{\zeta}$,

$$f(z,\zeta) = z + \sum_{j=2}^{\infty} a_j(\zeta) z^j$$

then

$$S^n f(z,\zeta) = z + \sum_{j=2}^{\infty} j^n a_j(\zeta) z^j, \quad z \in U, \ \zeta \in \overline{U}.$$

2. Main results

Definition 2.1. If $\alpha < 1$ and $m, n \in \mathbb{N}$, let $S_m^n(\alpha)$ denote the class of functions $f \in A_{n\zeta}^*$ which satisfy the inequality

$$\operatorname{Re}\left[S^m f(z,\zeta)\right]' > \alpha. \tag{2.1}$$

Theorem 2.2. If $\alpha < 1$ and $m, n \in \mathbb{N}$, then

$$S_n^{m+1}(\alpha) \subset S_n^m(\delta) \tag{2.2}$$

where

$$\delta = \delta(\alpha, n, m) = (2\alpha - 1) + 1 - (2\alpha - 1)\frac{1}{n}\beta\left(\frac{1}{n}\right),$$

$$\beta(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt.$$
 (2.3)

Proof. Let $f \in S_n^{m+1}(\alpha)$. By using the properties of the operator $S^m f(z, \zeta)$, we have

$$S^{m+1}f(z,\zeta) = z[S^m f(z,\zeta)]', \ z \in U, \ \zeta \in \overline{U}.$$
(2.4)

Differentiating (2.4) we obtain

$$[S^{m+1}f(z,\zeta)]' = [S^m f(z,\zeta)]' + z[S^m f(z,\zeta)]'', \quad z \in U, \ \zeta \in \overline{U}.$$
 (2.5)

If we let $p(z,\zeta) = [S^m f(z,\zeta)]'$, then

$$p'(z,\zeta) = [S^m f(z,\zeta)]'$$

and (2.5) becomes

$$[S^{m+1}f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta).$$
(2.6)

Since $f \in S_n^{m+1}(\alpha)$, by using Definition 2.1, we have

$$\operatorname{Re}\left[p(z,\zeta) + zp'(z,\zeta)\right] > \alpha \tag{2.7}$$

which is equivalent to

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec \frac{1 + (2\alpha - 1)z}{1 + z} \equiv h(z,\zeta).$$
 (2.8)

By using Lemma 1.3, we have

$$p(z,\zeta) \prec g(z,\zeta) \prec h(z,\zeta)$$
(2.9)

where

$$g(z,\zeta) = \frac{1}{nz^{1/n}} \int_0^z \frac{1 - (2\alpha - 1)t}{1 + t} t^{(1/n) - 1} dt.$$
(2.10)

The function $g(z,\zeta)$ is convex and is the best dominant.

From $p(z,\zeta) \prec \prec g(z,\zeta)$, it results that

Re
$$p(z,\zeta) > \delta = g(1,\zeta) = \delta(\alpha, n, m)$$
 (2.11)

where

$$g(1,\zeta) = \frac{1}{n} \int_{0}^{1} t^{\frac{1}{n}-1} \cdot \frac{1+(2\alpha-1)t}{1+t} dt \qquad (2.12)$$

$$= \frac{1}{n} \int_{0}^{1} t^{\frac{1}{n}-1} \cdot \frac{1+(2\alpha-1)t+(2\alpha-1)-(2\alpha-1)}{1+t} dt$$

$$= \frac{1}{n} \int_{0}^{1} t^{\frac{1}{n}-1} \left[\frac{(2\alpha-1)(t+1)}{1+t} + \frac{1-2\alpha+1}{1+t} \right] dt$$

$$= (2\alpha-1) \frac{1}{n} \int_{0}^{1} t^{\frac{1}{n}-1} dt + \frac{1}{n} \int_{0}^{1} t^{\frac{1}{n}-1} \cdot \frac{1-(2\alpha-1)}{1+t} dt$$

$$= (2\alpha-1) \frac{1}{n} \cdot \frac{t^{\frac{1}{n}}}{\frac{1}{n}} \Big|_{0}^{1} + \frac{1-(2\alpha-1)}{n} \int_{0}^{1} \frac{t^{\frac{1}{n}-1}}{1+t} dt$$

$$= (2\alpha-1) + \frac{1-(2\alpha-1)}{n} \beta\left(\frac{1}{n}\right) \qquad (2.13)$$
deduce that $S_{n}^{m+1}(\alpha) \subset S_{n}^{m}(\delta).$

from which we deduce that $S_n^{m+1}(\alpha) \subset S_n^m(\delta)$.

Theorem 2.3. Let $g(z,\zeta)$ be a convex function $g(0,\zeta) = 1$ and let $h(z,\zeta)$ be a function such that

$$h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta).$$
(2.14)

If $f\in A^*_{n\zeta}$ and verifies the strong differential subordination

$$[S^{m+1}f(z,\zeta)]' \prec \prec h(z,\zeta) \tag{2.15}$$

then

$$[S^m f(z,\zeta)]' \prec \prec g(z,\zeta). \tag{2.16}$$

ADELA OLIMPIA TĂUT

Proof. From

$$S^{m+1}f(z,\zeta) = z[S^m f(z,\zeta)]'$$
(2.17)

we obtain

$$[S^{m+1}f(z,\zeta)]' = [S^m f(z,\zeta)]' + z[S^m f(z,\zeta)]''.$$
(2.18)

If we let $p(z,\zeta) = [S^m f(z,\zeta)]'$, then we obtain

$$[S^{m+1}f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta)$$
(2.19)

and (2.15) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec g(z,\zeta) + zg'(z,\zeta) \equiv h(z,\zeta).$$
(2.20)

Using Lemma 1.4, we have

$$p(z,\zeta) \prec g(z,\zeta), \text{ i.e., } S^m f(z,\zeta) \prec g(z,\zeta).$$
 (2.21)

Theorem 2.4. Let $h \in \mathcal{H}^*[a, n, \zeta]$, with $h(0, \zeta) = 1$, $h'(0, \zeta) \neq 0$ which verifies the inequality

Re
$$\left[1 + \frac{zh''(z,\zeta)}{h'(z,\zeta)}\right] > -\frac{1}{2(m+1)}, \quad m \ge 0.$$
 (2.22)

If $f\in A^*_{n\zeta}$ and verifies the strong differential subordination

$$[S^{m+1}f(z,\zeta)]' \prec \prec h(z,\zeta), \quad z \in U$$
(2.23)

then

$$[S^m f(z,\zeta)]' \prec g(z,\zeta), \tag{2.24}$$

where

$$g(z,\zeta) = \frac{1}{nz^{1/n}} \int_0^z t^{(1/n)-1} h(t,\zeta) dt.$$
 (2.25)

The function g is convex and is the best dominant.

Proof. From

$$S^{m+1}f(z,\zeta) = z[S^m f(z,\zeta)]'$$
(2.26)

we obtain

$$[S^{m+1}f(z,\zeta)]' = [S^m f(z,\zeta)]' + z[S^m f(z,\zeta)]''.$$
(2.27)

If we let $p(z,\zeta) = [S^m f(z,\zeta)]'$, then we obtain

$$[S^{m+1}f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta)$$
(2.28)

and (2.23) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec h(z,\zeta).$$
(2.29)

By using Lemma 1.3 we have

$$p(z,\zeta) \prec g(z,\zeta) = \frac{1}{nz^{1/n}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt.$$
 (2.30)

Theorem 2.5. Let $g(z,\zeta)$ be a convex function with $g(0,\zeta) = 1$ and

$$h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta).$$
 (2.31)

If $f\in A^*_{n\zeta}$ and verifies the differential subordination

$$[S^m f(z,\zeta)]' \prec \prec h(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}$$
(2.32)

then

$$\frac{S^m f(z,\zeta)}{z} \prec g(z,\zeta). \tag{2.33}$$

Proof. We let

$$p(z,\zeta) = \frac{S^m f(z,\zeta)}{z}, \quad z \in U, \ \zeta \in \overline{U},$$

we obtain

$$S^m f(z,\zeta) = zp(z,\zeta). \tag{2.34}$$

By differentiating, we obtain

$$[S^m f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta), \quad z \in U, \ \zeta \in \overline{U}.$$
(2.35)

Then (2.32) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta).$$

$$(2.36)$$

Using Lemma 1.4 we have

$$p(z,\zeta) \prec \prec g(z,\zeta).$$

ADELA OLIMPIA TĂUT

References

- Miller, S. S., Mocanu, P. T., On some classes of first-order differential subordinations, Michigan Math. J., **32** (1985), no. 2, 185-195.
- [2] Miller, S. S., Mocanu, P. T., Differential Subordinations. Theory and Applications, Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.
- [3] Oros, G. I., On a new strong differential subordination (to appear).
- [4] Oros, G. I., Oros, Gh. Strong differential subordination, Turkish Journal of Mathematics, 33 (2009), 249-257.
- [5] Sălăgean, G. S., Subclasses of univalent functions, Complex Analysis, Fift Romanian Finish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

UNIVERSITY OF ORADEA FACULTY OF ENVIRONMENTAL PROTECTION GENERAL MAGHERU STREET ORADEA, ROMANIA *E-mail address*: adela_taut@yahoo.com