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SOME STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY SĂLĂGEAN DIFFERENTIAL OPERATOR

ADELA OLIMPIA TĂUT

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. S. S. Miller and P. T. Mocanu introduced the notion of dif-

ferential superordination as a dual concept of differential subordination .

The notion of strong differential subordination was introduced by J. A.

Antonino and S. Romaguera. By using the Sălăgean differential opera-

tor we introduce a class of holomorphic functions denoted by Sm
n (α), and

obtain some strong subordinations results.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane,

U = {z ∈ C; |z| < 1} (1.1)

U = {z ∈ C; |z| ≤ 1} (1.2)

the closed unit disc of the complex plane.

In the paper [3], Georgia I. Oros defined the classes H(U × U) denote the

class of analytic functions in U × U ,

A∗
ζ = {f ∈ H(U × U) | f(z, ζ) = z + a2(ζ)z2 + . . . , z ∈ U, ζ ∈ U}, (1.3)

A∗
nζ = {f ∈ H(U × U) | f(z, ζ) = z + an+1(ζ)zn+1 + . . . , z ∈ U, ζ ∈ U}, (1.4)
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for n = 1, A∗
nζ = A∗

ζ , with ak(ζ) holomorphic functions in U , k ≥ 2,

H∗[a, n, ζ] = {f ∈ H(U×U) | f(z, ζ) = a+an(ζ)zn+an+1(ζ)zn+1+. . . , z ∈ U, ζ ∈ U}

(1.5)

where ak(ζ) holomorphic functions in U , k ≥ n, and let

Hu(U) = {f ∈ H∗[a, n, ζ] | f(z, ζ) univalent in U for all ζ ∈ U}, (1.6)

K∗ =
{

f ∈ H∗[a, n, ζ] | Re
zf ′′(z, ζ)
f ′(z, ζ)

+ 1 > 0, z ∈ U for all ζ ∈ U

}
(1.7)

the class of convex functions,

S∗ =
{

f ∈ H∗[a, n, ζ] | Re
zf ′(z, ζ)
f(z, ζ)

> 0, z ∈ U for all ζ ∈ U

}
(1.8)

the class of starlike functions.

Definition 1.1. [4] Let f(z, ζ), H(z, ζ) analytic in U×U . The function f(z, ζ) is said

to be strongly subordinate to H(z, ζ), or H(z, ζ) is said to be strongly superordinate to

f(z, ζ), if there exists a function w analytic in U , with w(0) = 0, and |w(z)| < 1 such

that f(z, ζ) = H(w(z), ζ) for all ζ ∈ U . In such a case we write f(z, ζ) ≺≺ H(z, ζ),

z ∈ U , ζ ∈ U .

Remark 1.2. [4] (i) Since f(z, ζ) is analytic in U × U , for all ζ ∈ U and univalent

in U , for all ζ ∈ U , Definition 1.1 is equivalent to f(0, ζ) = H(0, ζ) for all ζ ∈ U and

f(U × U) ⊂ H(U × U).

(ii) If H(z, ζ) ≡ H(z) and f(z, ζ) ≡ f(z) then strong subordination becomes

usual notion of subordination.

Lemma 1.3. [2, page 71] Let h(z, ζ) be a convex function with h(0, ζ) = a for every

ζ ∈ U and let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ H∗[a, n, ζ] and

p(z, ζ) +
1
γ

zp′(z, ζ) ≺≺ h(z, ζ) (1.9)

then p(z, ζ) ≺≺ q(z, ζ) ≺≺ h(z, ζ) where

g(z, ζ) =
γ

nzγ/n

∫ z

0

h(t, ζ)t(γ/n)−1dt. (1.10)

The function g(z, ζ) is convex and is the best dominant.
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Lemma 1.4. [1] Let g(z, ζ) be a convex function in U ,for all ζ ∈ U and let

h(z, ζ) = g(z, ζ) + nαg′(z, ζ), (1.11)

where α > 0 and n is a positive integer. If

p(z, ζ) = g(0, ζ) + pn(ζ)zn + . . .

is holomorphic in U , for all ζ ∈ U and

p(z, ζ) + αzp′(z, ζ) ≺≺ h(z, ζ) (1.12)

then

p(z, ζ) ≺≺ g(z, ζ) (1.13)

and this result is sharp.

Definition 1.5. [5] For f ∈ A∗
ζ , n ∈ N∗ ∪ {0}, the operator Snf is defined by

Sn : A∗
ζ → A∗

ζ

S0f(z, ζ) = f(z, ζ)

S1f(z, ζ) = zf ′(z, ζ)

. . .

Sn+1f(z, ζ) = z[Snf(z, ζ)]′, z ∈ U, ζ ∈ U.

Remark 1.6. If f ∈ A∗
ζ ,

f(z, ζ) = z +
∞∑

j=2

aj(ζ)zj

then

Snf(z, ζ) = z +
∞∑

j=2

jnaj(ζ)zj , z ∈ U, ζ ∈ U.
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2. Main results

Definition 2.1. If α < 1 and m,n ∈ N, let Sn
m(α) denote the class of functions

f ∈ A∗
nζ which satisfy the inequality

Re [Smf(z, ζ)]′ > α. (2.1)

Theorem 2.2. If α < 1 and m,n ∈ N, then

Sm+1
n (α) ⊂ Sm

n (δ) (2.2)

where

δ = δ(α, n,m) = (2α− 1) + 1− (2α− 1)
1
n

β

(
1
n

)
,

β(x) =
∫ 1

0

tx−1

1 + t
dt.

(2.3)

Proof. Let f ∈ Sm+1
n (α). By using the properties of the operator Smf(z, ζ), we have

Sm+1f(z, ζ) = z[Smf(z, ζ)]′, z ∈ U, ζ ∈ U. (2.4)

Differentiating (2.4) we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ)]′ + z[Smf(z, ζ)]′′, z ∈ U, ζ ∈ U. (2.5)

If we let p(z, ζ) = [Smf(z, ζ)]′, then

p′(z, ζ) = [Smf(z, ζ)]′′

and (2.5) becomes

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ). (2.6)

Since f ∈ Sm+1
n (α), by using Definition 2.1, we have

Re [p(z, ζ) + zp′(z, ζ)] > α (2.7)

which is equivalent to

p(z, ζ) + zp′(z, ζ) ≺≺ 1 + (2α− 1)z
1 + z

≡ h(z, ζ). (2.8)

By using Lemma 1.3, we have

p(z, ζ) ≺≺ g(z, ζ) ≺≺ h(z, ζ) (2.9)
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where

g(z, ζ) =
1

nz1/n

∫ z

0

1− (2α− 1)t
1 + t

t(1/n)−1dt. (2.10)

The function g(z, ζ) is convex and is the best dominant.

From p(z, ζ) ≺≺ g(z, ζ), it results that

Re p(z, ζ) > δ = g(1, ζ) = δ(α, n,m) (2.11)

where

g(1, ζ) =
1
n

∫ 1

0

t
1
n−1 · 1 + (2α− 1)t

1 + t
dt (2.12)

=
1
n

∫ 1

0

t
1
n−1 · 1 + (2α− 1)t + (2α− 1)− (2α− 1)

1 + t
dt

=
1
n

∫ 1

0

t
1
n−1

[
(2α− 1)(t + 1)

1 + t
+

1− 2α + 1
1 + t

]
dt

= (2α− 1)
1
n

∫ 1

0

t
1
n−1dt +

1
n

∫ 1

0

t
1
n−1 · 1− (2α− 1)

1 + t
dt

= (2α− 1)
1
n
· t

1
n

1
n

∣∣∣1
0

+
1− (2α− 1)

n

∫ 1

0

t
1
n−1

1 + t
dt

= (2α− 1) +
1− (2α− 1)

n
β

(
1
n

)
(2.13)

from which we deduce that Sm+1
n (α) ⊂ Sm

n (δ). �

Theorem 2.3. Let g(z, ζ) be a convex function g(0, ζ) = 1 and let h(z, ζ) be a function

such that

h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.14)

If f ∈ A∗
nζ and verifies the strong differential subordination

[Sm+1f(z, ζ)]′ ≺≺ h(z, ζ) (2.15)

then

[Smf(z, ζ)]′ ≺≺ g(z, ζ). (2.16)
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Proof. From

Sm+1f(z, ζ) = z[Smf(z, ζ)]′ (2.17)

we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ)]′ + z[Smf(z, ζ)]′′. (2.18)

If we let p(z, ζ) = [Smf(z, ζ)]′, then we obtain

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ) (2.19)

and (2.15) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + zg′(z, ζ) ≡ h(z, ζ). (2.20)

Using Lemma 1.4, we have

p(z, ζ) ≺≺ g(z, ζ), i.e., Smf(z, ζ) ≺≺ g(z, ζ). (2.21)

�

Theorem 2.4. Let h ∈ H∗[a, n, ζ], with h(0, ζ) = 1, h′(0, ζ) 6= 0 which verifies the

inequality

Re
[
1 +

zh′′(z, ζ)
h′(z, ζ)

]
> − 1

2(m + 1)
, m ≥ 0. (2.22)

If f ∈ A∗
nζ and verifies the strong differential subordination

[Sm+1f(z, ζ)]′ ≺≺ h(z, ζ), z ∈ U (2.23)

then

[Smf(z, ζ)]′ ≺≺ g(z, ζ), (2.24)

where

g(z, ζ) =
1

nz1/n

∫ z

0

t(1/n)−1h(t, ζ)dt. (2.25)

The function g is convex and is the best dominant.

Proof. From

Sm+1f(z, ζ) = z[Smf(z, ζ)]′ (2.26)

we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ]′ + z[Smf(z, ζ)]′′. (2.27)
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If we let p(z, ζ) = [Smf(z, ζ)]′, then we obtain

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ) (2.28)

and (2.23) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ). (2.29)

By using Lemma 1.3 we have

p(z, ζ) ≺≺ g(z, ζ) =
1

nz1/n

∫ z

0

h(t, ζ)t
1
n−1dt. (2.30)

�

Theorem 2.5. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and

h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.31)

If f ∈ A∗
nζ and verifies the differential subordination

[Smf(z, ζ)]′ ≺≺ h(z, ζ), z ∈ U, ζ ∈ U (2.32)

then
Smf(z, ζ)

z
≺≺ g(z, ζ). (2.33)

Proof. We let

p(z, ζ) =
Smf(z, ζ)

z
, z ∈ U, ζ ∈ U,

we obtain

Smf(z, ζ) = zp(z, ζ). (2.34)

By differentiating, we obtain

[Smf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U. (2.35)

Then (2.32) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.36)

Using Lemma 1.4 we have

p(z, ζ) ≺≺ g(z, ζ).

�
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