STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 3, September 2010

DUALITY FOR HADAMARD PRODUCTS APPLIED TO CERTAIN CONDITION FOR α -STARLIKENESS

JANUSZ SOKÓŁ

Dedicated to Professor Grigore Ștefan Sălăgean on his 60th birthday

Abstract. Let $\mathcal{P}(\alpha,\beta)$, $\alpha > 0$, $\beta < 1$, denote the class of all analytic functions f in the unit disc with the normalization f(0) = 1, f'(0) = 1 and satisfying the condition

$$\mathfrak{Re}[e^{i\varphi}(f'(z) + \frac{1}{\alpha}zf''(z) - \beta)] > 0, \quad |z| < 1$$

for some $\varphi \in \mathbb{R}$. In this paper we find conditions on α, β so that $\mathcal{P}(\alpha, \beta) \subseteq \mathcal{S}^*(\mu)$, where $\mu < 1$ is given and $\mathcal{S}^*(\mu)$ denote the class of starlike function of order μ . We take advantage of the Ruscheweh's Duality theory.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the open unit disc

$$U = \{z : |z| < 1\}$$

of the complex plane \mathbb{C} . Everywhere in this paper $z \in U$ unless we make a note. We say that $f \in \mathcal{H}$ is convex when f(U) is a convex set. Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by f(0) = 0, f'(0) = 1. For $\mu < 1$, by $\mathcal{S}^*(\mu)$ we denote the well known subclass of \mathcal{A} consisting of starlike function of order μ . As is well known

$$\mathcal{S}^*(\mu) = \left\{ f \in \mathcal{A} : \ \mathfrak{Re}\left[rac{zf'(z)}{f(z)}
ight] > \mu \ ext{for} \ z \in \ U
ight\}$$

Received by the editors: 26.04.2010.

2000 Mathematics Subject Classification. 30C45, 33C05.

Key words and phrases. Duality principle, dual set, Hadamard product, Starlike functions, convex functions, functions with positive real part, Gaussian hypergeometric function.

JANUSZ SOKÓŁ

 $S^*(0) = S^*$ is the class of starlike functions which map U onto a starlike domain with respect to the origin. For $\alpha > 0$ and $\beta < 1$ given, define

$$\mathcal{P}(\alpha,\beta) = \left\{ f \in \mathcal{A} : \exists \varphi \in \mathbb{R} \ \text{ s. t. } \ \mathfrak{Re}\left[e^{i\varphi} \left(f'(z) + \frac{1}{\alpha} z f''(z) - \beta \right) \right] > 0, z \in U \right\}.$$

In the geometric theory of function, a variety of sufficient conditions for starlikeness have been considered. We refer to the monographs [4], [5] for details. In the present work we tray to find conditions on α, β so that $\mathcal{P}(\alpha, \beta) \subseteq S^*(\mu)$, where $\mu < 1$ is given. If f and g are analytic in U with $f(z) = a_0 + a_1 z + a_2 z^2 + \ldots$ and $g(z) = b_0 + b_1 z + b_2 z^2 + \ldots$ then the Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = a_0b_0 + a_1b_1z + a_2b_2z^2 + \dots$$

The convolution has the algebraic properties of ordinary multiplication. In convolution theory, the concept of duality is central. For a set

$$V \subseteq \mathcal{A}_0 = \left\{ g : g(z) = \frac{f(z)}{z}, f \in \mathcal{A} \right\}$$

the dual set V^* is defined as

$$V^* = \{g \in \mathcal{A}_0 : (f * g)(z) \neq 0 \text{ for all } f \in V, z \in U\}.$$

In this paper we use the powerful method of duality principle in geometric function theory developed by Ruscheweyh [8]. The basic results of Ruscheweyh's duality theory one can find in the book [9]. The duality principle states that, under certain conditions on V, the range of a continuous linear functional on V equals the range of the same linear functional on $(V^*)^* = V^{**}$. This is a useful information since in many cases of interest V^{**} is much larger than V. Then by investigating the small set we can get results about the large set. One such pair of the sets is described in the theorem below.

Theorem 1.1. Let

$$V_{\beta} = \left\{ \beta + \frac{(1-\beta)(1+xz)}{1+yz} : |x| = |y| = 1 \right\}, \beta \in \mathbb{R}, \beta \neq 1.$$

Then

214

$$V_{\beta}^{**} = \left\{ g \in \mathcal{A}_0 : \exists \varphi \in \mathbb{R} \text{ such that } \Re \mathfrak{e} \left[e^{i\varphi} \left(g(z) - \beta \right) \right] > 0, z \in U \right\}.$$

Theorem 1.1 with $\beta = 0$ one can find in [9, p. 22]. Notice that if $h \in V_{\beta}$, $h(z) = \beta + (1 - \beta) \frac{1+xz}{1+yz}$ with |x| = |y| = 1, $\beta \in \mathbb{R}$, $\beta \neq 1$, then

$$h(z) = 1 + (1 - \beta) \left(1 - \frac{x}{y}\right) \frac{yz}{1 - yz} = 1 + (1 - \beta)(1 - e^{i\psi}) \sum_{k=1}^{\infty} (yz)^k$$
(1.1)

for some $\psi \in \mathbb{R}$. A subset $V \subseteq \mathcal{A}_0$ is said to be complete if it has the following property:

$$f \in V \Rightarrow f(xz) \in V \; \forall |x| \le 1.$$

Theorem 1.2. (Duality principle, see [8]) Let $V \subseteq A_0$ be compact and complete. If λ is a continuous linear functional on \mathcal{H} , then

$$\lambda(V) = \lambda\left(V^{**}\right), \quad \overline{co}(V) = \overline{co}\left(V^{**}\right).$$

The sets V_{β} and V_{β}^{**} in Theorem 1.1 are compact and complete. The following Theorem 1.3 one can find in [9, p. 23] and in [10].

Theorem 1.3. (see [10]) Let $f \in A$. Then f belongs to the class $S^*(\mu)$ of starlike function of order μ if and only if

$$\frac{f(z)}{z} * \frac{1 + \frac{\varepsilon + 2\mu - 1}{2(1-\mu)}z}{(1-z^2)} \neq 0 \quad \forall \ |\varepsilon| = 1, \ \forall \ z \in U.$$

2. Main results

Theorem 2.1. Suppose that $\alpha > 0$, $\beta < 1$, $\mu < 1$. Then $\mathcal{P}(\alpha, \beta) \subseteq \mathcal{S}^*(\mu)$ if and only if

$$\mathfrak{Re}\left[H(\varepsilon;z)\right] > -\frac{1-\mu}{1-\beta} \quad \forall |\varepsilon| = 1, \quad \forall z \in U,$$

$$(2.1)$$

where

$$H(\varepsilon; z) = \alpha \sum_{k=1}^{\infty} \frac{k(1+\varepsilon) + 2(1-\mu)}{(k+1)(k+\alpha)} z^k.$$
(2.2)

Proof. Let a function f be in the class $\mathcal{P}(\alpha, \beta)$. If we denote $f'(z) + \frac{z}{\alpha}f''(z) = g_{\alpha}(z)$, then we have $g_{\alpha} \in V_{\beta}^{**}$. If $f(z) = \sum_{k=1}^{\infty} a_k z^k$, $a_1 = 1$, then

$$f'(z) + \frac{z}{\alpha}f''(z) = \sum_{k=1}^{\infty} \frac{k(k-1+\alpha)}{\alpha} a_k z^{k-1} = g_{\alpha}(z)$$

215

JANUSZ SOKÓŁ

$$\frac{f(z)}{z} = \sum_{k=1}^{\infty} a_k z^{k-1} = g_{\alpha}(z) * \sum_{k=1}^{\infty} \frac{\alpha z^{k-1}}{k(k-1+\alpha)},$$

and we obtain one-to-one correspondence between $\mathcal{P}(\alpha, \beta)$ and V_{β}^{**} . Thus, by Theorem 1.3, $\mathcal{P}(\alpha, \beta) \subseteq \mathcal{S}^{*}(\mu)$ if and only if

$$g_{\alpha}(z) * \sum_{k=1}^{\infty} \frac{\alpha z^{k-1}}{k(k-1+\alpha)} * \frac{1 + \frac{\varepsilon + 2\mu - 1}{2(1-\mu)}z}{(1-z)^2} \neq 0 \quad \forall g_{\alpha} \in V_{\beta}^{**}, \ \forall \ |\varepsilon| = 1, \forall \ z \in U.$$
(2.3)

Let us consider for $z \in U$ the continuous linear functional $\lambda_z : \mathcal{A}_0 \to \mathbb{C}$, such that

$$\lambda_z(h) := h(z) * \sum_{k=1}^{\infty} \frac{\alpha z^{k-1}}{k(k-1+\alpha)} * \frac{1 + \frac{\varepsilon + 2\mu - 1}{2(1-\mu)}z}{(1-z)^2},$$

By Duality principle we have $\lambda_z(V) = \lambda_z(V_\beta^{**})$. Therefore (2.3) holds if and only if

$$\left[1 + (1 - \beta)(1 - e^{i\psi})\sum_{k=1}^{\infty} z^k\right] * \left[1 + \sum_{k=1}^{\infty} \frac{\alpha z^k}{(k+1)(k+\alpha)}\right] * \left[\frac{1 + \frac{\varepsilon + 2\mu - 1}{2(1-\mu)}z}{(1-z)^2}\right] \neq 0 \quad (2.4)$$

for all $\psi \in \mathbb{R}$, $|\varepsilon| = 1$, $z \in U$. Using the properties of convolution we can reformulate (2.4) as

$$\alpha \sum_{k=1}^{\infty} \frac{k(1+\varepsilon) + 2(1-\mu)}{(k+1)(k+\alpha)} z^k \neq -\frac{2(1-\mu)}{(1-e^{i\psi})(1-\beta)}.$$
(2.5)

For $\psi \in \mathbb{R}$ the quantity on the right site of (2.5) takes its values on the line $\Re ew = -\frac{1-\mu}{1-\beta}$ so (2.5) is equivalent to (2.1).

Starlikeness of functions in $\mathcal{P}(\alpha, \beta)$ has been investigated. For example we have the reformulated version from [3].

Theorem 2.2. (see [3]) If $f \in \mathcal{P}(\alpha, \beta)$ and $\alpha \leq 3$ and $\beta(\alpha)$ be given by

$$\frac{\beta(\alpha)}{1-\beta(\alpha)} = \alpha \int_0^1 \frac{t^{\alpha-1}(t-1)}{t+1} \, \mathrm{d}t,$$

then $f \in \mathcal{S}^*(0)$ and the value of $\beta(\alpha)$ is sharp.

Note that Fournier and Ruscheweyh introduced in [3] the integral transform

$$V_{\lambda}: \mathcal{A} \to \mathcal{A}$$

such that

$$V_{\lambda}(f)(z) = \int_0^1 \lambda(t) \frac{f(tz)}{t} \, \mathrm{d}t,$$

216

 \mathbf{SO}

where $\lambda(t)$ is real valued integrable function satisfying the normalizing condition

$$\int_0^1 \lambda(t) \, \mathrm{d}t = 1.$$

This operator was introduced mainly to find conditions on $\lambda(t)$ and β so that $V_{\lambda}(f)$ maps $\mathcal{P}(\alpha, \beta)$ into $S^*(0)$, when $\alpha \to \infty$. Recently Balasubramanian, Ponnusamy and Prabhakaran in [2] and Ponnusamy and Rønning in [7] extended this considerations to find conditions on $\lambda(t)$ and β such that $V_{\lambda}(f)$ is starlike of order μ , $(0 \le \mu \le 1/2)$ when $f \in \mathcal{P}(\alpha, \beta)$. For convexity of this integral transform see [1].

While Theorem 2.1 precisely answers when $\mathcal{P}(\alpha, \beta) \subseteq \mathcal{S}^*(\mu)$ it is difficult to answer when the condition (2.1) is satisfied in general. It seems that $\mathfrak{Re}H(\varepsilon; z)$ attains its minimum at z = -1 and $\varepsilon = 1$ but it is hard to show.

Conjecture 2.3. Let f be given by (2.2). Then

$$\min \{ \Re \mathfrak{e} H(\varepsilon; z) : |\varepsilon| = 1, |z| < 1 \} = H(1; -1).$$

In [11] we apply the general theory of differential subordinations to obtain several weaker but simple sufficient conditions for μ -starlikeness while Owa and Sălăgean in [6] considered a sufficient condition and a necessary condition for starlikeness of complex order of functions with negative coefficients. One can expressed the function $H(\varepsilon; z)$ in terms of the Gaussian hypergeometric function

$$_{2}F_{1}(a,b,c;z) = \sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}k!} z^{k},$$

where $(x)_k$ denotes the Pochhammer symbol defined by

$$(x)_k = x(x+1)(x+2)\cdots(x+k-1)$$
 for $k \in \mathbb{N}$ and $(x)_0 = 1$.

Then for $\alpha \neq 1$ we have

$$H(\varepsilon; z) = \alpha \sum_{k=1}^{\infty} \frac{k(1+\varepsilon) + 2(1-\mu)}{(k+1)(k+\alpha)} z^k$$

=
$$\frac{\alpha(\varepsilon+2\mu-1)}{1-\alpha} \sum_{k=1}^{\infty} \frac{z^k}{k+1} + \frac{2(1-\mu) - \alpha(\varepsilon+1)}{1-\alpha} \sum_{k=1}^{\infty} \frac{\alpha z^k}{k+\alpha}$$

217

JANUSZ SOKÓŁ

$$=\frac{\alpha(\varepsilon+2\mu-1)\left[{}_{2}F_{1}(1,1,2;z)-1\right]+\left[2(1-\mu)-\alpha(\varepsilon+1)\right]\left[{}_{2}F_{1}(1,\alpha,\alpha+1;z)-1\right]}{1-\alpha}$$

$$=2(\mu-1)+\frac{\alpha(\varepsilon+2\mu-1)}{1-\alpha}{}_{2}F_{1}(1,1,2;z)+\frac{2(1-\mu)-\alpha(\varepsilon+1)}{1-\alpha}{}_{2}F_{1}(1,\alpha,\alpha+1;z)$$

$$=2(\mu-1)+\frac{\alpha(\varepsilon+2\mu-1)}{1-\alpha}\frac{1}{z}\ln\frac{1}{1-z}+\frac{2(1-\mu)-\alpha(\varepsilon+1)}{1-\alpha}{}_{2}F_{1}(1,\alpha,\alpha+1;z).$$
We can rewrite the inequality (2.1) in the form

We can rewrite the inequality (2.1) in the form

$$\frac{1-\mu}{\alpha(1-\beta)} + \Re \mathfrak{e} \left[\sum_{k=1}^{\infty} \frac{kz^k}{(k+1)(k+\alpha)} \right] + 2(1-\mu) \Re \mathfrak{e} \left[\sum_{k=1}^{\infty} \frac{z^k}{(k+1)(k+\alpha)} \right]$$
(2.6)
> $\Re \mathfrak{e} \left[-\varepsilon \sum_{k=1}^{\infty} \frac{kz^k}{(k+1)(k+\alpha)} \right] \quad \forall |\varepsilon| = 1, \quad \forall z \in U,$

thus we can see that (2.6) is satisfied when

$$\begin{aligned} \frac{1-\mu}{\alpha(1-\beta)} + \Re \mathfrak{e} \left[\sum_{k=1}^{\infty} \frac{kz^k}{(k+1)(k+\alpha)} \right] + 2(1-\mu) \Re \mathfrak{e} \left[\sum_{k=1}^{\infty} \frac{z^k}{(k+1)(k+\alpha)} \right] & (2.7) \\ > \left| \sum_{k=1}^{\infty} \frac{kz^k}{(k+1)(k+\alpha)} \right| \quad \forall z \in U. \end{aligned}$$

Conjecture 2.4. Let the function G be given by

$$G(z) = 2(1+\alpha)\sum_{k=1}^{\infty} \frac{1}{(k+1)(k+\alpha)} z^k$$

Then the function zG'(z) is a convex function when $-1 < \alpha$.

Note tat it is known that G is a convex while zG' is a starlike function. With this notation (2.7) becomes

$$\frac{2(1+\alpha)(1-\mu)}{\alpha(1-\beta)} + \Re \mathfrak{e} z G'(z) + 2(1-\mu) \Re \mathfrak{e} G(z) > |zG'(z)| \forall z \in U.$$
(2.8)

If Conjecture 2.4 is true, then we have $G'(-1) < \Re e G'(z) < G'(1)$ so for (2.8) it suffices that

$$\frac{1-\mu}{\alpha(1-\beta)} + \sum_{k=1}^{\infty} \frac{k(-1)^k}{(k+1)(k+\alpha)} + 2(1-\mu) \sum_{k=1}^{\infty} \frac{(-1)^k}{(k+1)(k+\alpha)}$$
(2.9)
$$> \sum_{k=1}^{\infty} \frac{k}{(k+1)(k+\alpha)}.$$

While (2.9) is not a necessary for (2.8) it still remains hard to verify. 218

References

- Balasubramanian, R., Ponnusamy, M., Prabhakaran, D. J., Convexity of integral transforms and function spaces, Integral Transforms and Special Functions, 18(1) (2007), 1-14.
- [2] Balasubramanian, R., Ponnusamy, M., Prabhakaran, D. J., On extremal problems related to integral transforms of a class of analytic functions, J. Math. Anal. Appl., 336 (2007), 542-555.
- Fournier, R., Ruscheweyh, S., On two extremal problems related to univalent functions, Rocky Mountain I. Math., 24(2) (1994), 529-538.
- [4] Goodman, A. W., Univalent Functions, vol. I and II, Mariner Publishing Co., Tampa, Florida (1983).
- [5] Miller, S. S., Mocanu, P. T., Differential subordinations: theory and applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York / Basel 2000.
- [6] Owa, S., Sălăgean, G. S., On an open problem of S. Owa, J. Math. Anal. Appl., 218(2) (1998), 453-457.
- [7] Ponnusamy, S., Rønning, F., Integral transforms of a class of analytic functions, Complex Var. Elliptic. Eq., 53(5) (2008), 423-434.
- [8] Ruscheweyh, S., Duality for Hadamard products with applications to extremal problems for functions regular in the unit disc, Trans. Amer. Math Soc., 210 (1975), 63-74.
- [9] Ruscheweyh, S., Convolutions in Geometric Function Theory, Sem. Math. Sup. 83, Press Univ. Montreal 1982.
- [10] Silverman, H., Silvia, E. M., Telage, D., Convolutions conditions for convexity starlikeness and spiral-likeness, Math. Z., 162(2) (1978), 125-130.
- [11] Sokół, J., On a condition for alpha-starlikeness, J. Math. Anal. Appl., 352 (2009), 696-701.

DEPARTMENT OF MATHEMATICS RZESZÓW UNIVERSITY OF TECHNOLOGY UL. W. POLA 2, 35-959 RZESZÓW, POLAND *E-mail address*: jsokol@prz.edu.pl