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Abstract. Let P(α, β), α > 0, β < 1, denote the class of all analytic

functions f in the unit disc with the normalization f(0) = 1, f ′(0) = 1

and satisfying the condition

Re[eiϕ(f ′(z) +
1

α
zf ′′(z)− β)] > 0, |z| < 1

for some ϕ ∈ R. In this paper we find conditions on α, β so that P(α, β) ⊆
S∗(µ), where µ < 1 is given and S∗(µ) denote the class of starlike function

of order µ. We take advantage of the Ruscheweh’s Duality theory.

1. Introduction

Let H denote the class of analytic functions in the open unit disc

U = {z : |z| < 1}

of the complex plane C. Everywhere in this paper z ∈ U unless we make a note. We

say that f ∈ H is convex when f(U) is a convex set. Let A denote the subclass of H

consisting of functions normalized by f(0) = 0, f ′(0) = 1. For µ < 1, by S∗(µ) we

denote the well known subclass of A consisting of starlike function of order µ. As is

well known

S∗(µ) =
{
f ∈ A : Re

[
zf ′(z)
f(z)

]
> µ for z ∈ U

}
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S∗(0) = S∗ is the class of starlike functions which map U onto a starlike domain with

respect to the origin. For α > 0 and β < 1 given, define

P(α, β) =
{
f ∈ A : ∃ϕ ∈ R s. t. Re

[
eiϕ

(
f ′(z) +

1
α
zf ′′(z)− β

)]
> 0, z ∈ U

}
.

In the geometric theory of function, a variety of sufficient conditions for starlikeness

have been considered. We refer to the monographs [4], [5] for details. In the present

work we tray to find conditions on α, β so that P(α, β) ⊆ S∗(µ), where µ < 1 is

given. If f and g are analytic in U with f(z) = a0 + a1z + a2z
2 + . . . and g(z) =

b0 +b1z+b2z2 + . . . then the Hadamard product (or convolution) of f and g is defined

by

(f ∗ g)(z) = a0b0 + a1b1z + a2b2z
2 + . . . .

The convolution has the algebraic properties of ordinary multiplication. In convolu-

tion theory, the concept of duality is central. For a set

V ⊆ A0 =
{
g : g(z) =

f(z)
z

, f ∈ A
}

the dual set V ∗ is defined as

V ∗ = {g ∈ A0 : (f ∗ g)(z) 6= 0 for all f ∈ V, z ∈ U} .

In this paper we use the powerful method of duality principle in geometric function

theory developed by Ruscheweyh [8]. The basic results of Ruscheweyh’s duality theory

one can find in the book [9]. The duality principle states that, under certain conditions

on V , the range of a continuous linear functional on V equals the range of the same

linear functional on (V ∗)∗ = V ∗∗. This is a useful information since in many cases

of interest V ∗∗ is much larger than V . Then by investigating the small set we can

get results about the large set. One such pair of the sets is described in the theorem

below.

Theorem 1.1. Let

Vβ =
{
β +

(1− β)(1 + xz)
1 + yz

: |x| = |y| = 1
}
, β ∈ R, β 6= 1.

Then

V ∗∗β =
{
g ∈ A0 : ∃ϕ ∈ R such that Re

[
eiϕ (g(z)− β)

]
> 0, z ∈ U

}
.
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Theorem 1.1 with β = 0 one can find in [9, p. 22]. Notice that if h ∈ Vβ ,

h(z) = β + (1− β) 1+xz
1+yz with |x| = |y| = 1, β ∈ R, β 6= 1, then

h(z) = 1 + (1− β)
(

1− x

y

)
yz

1− yz
= 1 + (1− β)(1− eiψ)

∞∑
k=1

(yz)k (1.1)

for some ψ ∈ R. A subset V ⊆ A0 is said to be complete if it has the following

property:

f ∈ V ⇒ f(xz) ∈ V ∀|x| ≤ 1.

Theorem 1.2. (Duality principle, see [8]) Let V ⊆ A0 be compact and complete. If

λ is a continuous linear functional on H, then

λ(V ) = λ (V ∗∗) , co(V ) = co (V ∗∗) .

The sets Vβ and V ∗∗β in Theorem 1.1 are compact and complete. The following

Theorem 1.3 one can find in [9, p. 23] and in [10].

Theorem 1.3. (see [10]) Let f ∈ A. Then f belongs to the class S∗(µ) of starlike

function of order µ if and only if

f(z)
z

∗
1 + ε+2µ−1

2(1−µ) z

(1− z2)
6= 0 ∀ |ε| = 1, ∀ z ∈ U.

2. Main results

Theorem 2.1. Suppose that α > 0, β < 1, µ < 1. Then P(α, β) ⊆ S∗(µ) if and only

if

Re [H(ε; z)] > −1− µ

1− β
∀|ε| = 1, ∀z ∈ U, (2.1)

where

H(ε; z) = α

∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk. (2.2)

Proof. Let a function f be in the class P(α, β). If we denote f ′(z)+ z
αf

′′(z) = gα(z),

then we have gα ∈ V ∗∗β . If f(z) =
∞∑
k=1

akz
k, a1 = 1, then

f ′(z) +
z

α
f ′′(z) =

∞∑
k=1

k(k − 1 + α)
α

akz
k−1 = gα(z)
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so
f(z)
z

=
∞∑
k=1

akz
k−1 = gα(z) ∗

∞∑
k=1

αzk−1

k(k − 1 + α)
,

and we obtain one-to-one correspondence between P(α, β) and V ∗∗β . Thus, by Theo-

rem 1.3, P(α, β) ⊆ S∗(µ) if and only if

gα(z) ∗
∞∑
k=1

αzk−1

k(k − 1 + α)
∗

1 + ε+2µ−1
2(1−µ) z

(1− z)2
6= 0 ∀gα ∈ V ∗∗β , ∀ |ε| = 1,∀ z ∈ U. (2.3)

Let us consider for z ∈ U the continuous linear functional λz : A0 → C, such that

λz(h) := h(z) ∗
∞∑
k=1

αzk−1

k(k − 1 + α)
∗

1 + ε+2µ−1
2(1−µ) z

(1− z)2
,

By Duality principle we have λz(V ) = λz(V ∗∗β ). Therefore (2.3) holds if and only if[
1 + (1− β)(1− eiψ)

∞∑
k=1

zk

]
∗

[
1 +

∞∑
k=1

αzk

(k + 1)(k + α)

]
∗

[
1 + ε+2µ−1

2(1−µ) z

(1− z)2

]
6= 0 (2.4)

for all ψ ∈ R, |ε| = 1, z ∈ U . Using the properties of convolution we can reformulate

(2.4) as

α
∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk 6= − 2(1− µ)
(1− eiψ)(1− β)

. (2.5)

For ψ ∈ R the quantity on the right site of (2.5) takes its values on the line Rew =

− 1−µ
1−β so (2.5) is equivalent to (2.1) . �

Starlikeness of functions in P(α, β) has been investigated. For example we

have the reformulated version from [3].

Theorem 2.2. (see [3]) If f ∈ P(α, β) and α ≤ 3 and β(α) be given by

β(α)
1− β(α)

= α

∫ 1

0

tα−1(t− 1)
t+ 1

dt,

then f ∈ S∗(0) and the value of β(α) is sharp.

Note that Fournier and Ruscheweyh introduced in [3] the integral transform

Vλ : A → A

such that

Vλ(f)(z) =
∫ 1

0

λ(t)
f(tz)
t

dt,
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where λ(t)is real valued integrable function satisfying the normalizing condition∫ 1

0

λ(t) dt = 1.

This operator was introduced mainly to find conditions on λ(t) and β so that Vλ(f)

maps P(α, β) into S∗(0), when α→∞. Recently Balasubramanian, Ponnusamy and

Prabhakaran in [2] and Ponnusamy and Rønning in [7] extended this considerations

to find conditions on λ(t) and β such that Vλ(f) is starlike of order µ, (0 ≤ µ ≤ 1/2)

when f ∈ P(α, β). For convexity of this integral transform see [1].

While Theorem 2.1 precisely answers when P(α, β) ⊆ S∗(µ) it is difficult

to answer when the condition (2.1) is satisfied in general. It seems that ReH(ε; z)

attains its minimum at z = −1 and ε = 1 but it is hard to show.

Conjecture 2.3. Let f be given by (2.2). Then

min {ReH(ε; z) : |ε| = 1, |z| < 1} = H(1;−1).

In [11] we apply the general theory of differential subordinations to obtain sev-

eral weaker but simple sufficient conditions for µ-starlikeness while Owa and Sălăgean

in [6] considered a sufficient condition and a necessary condition for starlikeness of

complex order of functions with negative coefficients. One can expressed the function

H(ε; z) in terms of the Gaussian hypergeometric function

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk,

where (x)k denotes the Pochhammer symbol defined by

(x)k = x(x+ 1)(x+ 2) · · · (x+ k − 1) for k ∈ N and (x)0 = 1.

Then for α 6= 1 we have

H(ε; z) = α
∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk

=
α(ε+ 2µ− 1)

1− α

∞∑
k=1

zk

k + 1
+

2(1− µ)− α(ε+ 1)
1− α

∞∑
k=1

αzk

k + α
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=
α(ε+ 2µ− 1) [2F1(1, 1, 2; z)− 1] + [2(1− µ)− α(ε+ 1)] [2F1(1, α, α+ 1; z)− 1]

1− α

= 2(µ− 1) +
α(ε+ 2µ− 1)

1− α
2F1(1, 1, 2; z) +

2(1− µ)− α(ε+ 1)
1− α

2F1(1, α, α+ 1; z)

= 2(µ− 1) +
α(ε+ 2µ− 1)

1− α

1
z

ln
1

1− z
+

2(1− µ)− α(ε+ 1)
1− α

2F1(1, α, α+ 1; z).

We can rewrite the inequality (2.1) in the form

1− µ

α(1− β)
+ Re

[ ∞∑
k=1

kzk

(k + 1)(k + α)

]
+ 2(1− µ)Re

[ ∞∑
k=1

zk

(k + 1)(k + α)

]
(2.6)

> Re

[
−ε

∞∑
k=1

kzk

(k + 1)(k + α)

]
∀|ε| = 1, ∀z ∈ U,

thus we can see that (2.6) is satisfied when

1− µ

α(1− β)
+ Re

[ ∞∑
k=1

kzk

(k + 1)(k + α)

]
+ 2(1− µ)Re

[ ∞∑
k=1

zk

(k + 1)(k + α)

]
(2.7)

>

∣∣∣∣∣
∞∑
k=1

kzk

(k + 1)(k + α)

∣∣∣∣∣ ∀z ∈ U.

Conjecture 2.4. Let the function G be given by

G(z) = 2(1 + α)
∞∑
k=1

1
(k + 1)(k + α)

zk

Then the function zG′(z) is a convex function when −1 < α.

Note tat it is known that G is a convex while zG′ is a starlike function. With

this notation (2.7) becomes

2(1 + α)(1− µ)
α(1− β)

+ RezG′(z) + 2(1− µ)ReG(z) > |zG′(z)|∀z ∈ U. (2.8)

If Conjecture 2.4 is true, then we have G′(−1) < ReG′(z) < G′(1) so for

(2.8)it suffices that

1− µ

α(1− β)
+

∞∑
k=1

k(−1)k

(k + 1)(k + α)
+ 2(1− µ)

∞∑
k=1

(−1)k

(k + 1)(k + α)
(2.9)

>
∞∑
k=1

k

(k + 1)(k + α)
.

While (2.9) is not a necessary for (2.8) it still remains hard to verify.
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