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AN APPLICATION OF MILLER AND MOCANU LEMMA
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Let H[a, n] be the class of functions f(z) = a + anzn + . . .

which are analytic in the open unit disk U. For f(z) ∈ H[a, n], S. S. Miller

and P. T. Mocanu (J. Math. Anal. Appl. 65(1978), 289-305) have shown

Miller and Mocanu lemma which is the generalization of Jack lemma by

I. S. Jack (J. London Math. Soc. 3(1971), 469-474). Applying Miller and

Mocanu lemma, an interesting property for f(z) ∈ H[a, n] and an example

are discussed.

1. Introduction

Let H[a, n] denote the class of functions f(z) of the form

f(z) = a +
∞∑

k=n

akzk (n = 1, 2, 3, . . .)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, where a ∈ C. Jack [1]

has shown the result for analytic functions w(z) in U with w(0) = 0, which is called

Jack’s lemma. In 1978, Miller and Mocanu [2] have given the generalization theorem

for Jack’s lemma, which was called Miller and Mocanu lemma.

Lemma 1.1 (Miller and Mocanu lemma). Let f(z) ∈ H[a, n] with f(z) 6≡ a. If there

exists a point z0 ∈ U such that

max
|z|5|z0|

|f(z)| = |f(z0)|,
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then
z0f

′(z0)
f(z0)

= m

and

Re
z0f

′′(z0)
f ′(z0)

+ 1 = m,

where m is real and

m = n
|f(z0)− a|2

|f(z0)|2 − |a|2
= n

|f(z0)| − |a|
|f(z0)|+ |a|

.

If a = 0, then the above lemma becomes Jack’s lemma due to Jack [1].

2. Main theorem

Applying Miller and Mocanu lemma, we derive

Theorem 2.1. Let f(z) ∈ H[a, n] with f(z) 6= 0 for z ∈ U. If there exists a point

z0 ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)|,

then
z0f

′(z0)
f(z0)

= −m (2.1)

and

Re
z0f

′′(z0)
f ′(z0)

+ 1 = −m, (2.2)

where

m = n
|a− f(z0)|2

|a|2 − |f(z0)|2
= n

|a| − |f(z0)|
|a|+ |f(z0)|

.

Proof. We defined the function g(z) by

g(z) =
1

f(z)

= c + cnzn + cn+1z
n+1 + . . .

(
c =

1
a

)
.
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Then, g(z) is analytic in U and g(0) = c 6= 0. Furthermore, by the assumtion

of the theorem, |g(z)| takes its maximum value at z = z0 in the closed disk |z| 5 |z0|.

It follows from this that

|g(z0)| =
1

|f(z0)|
=

1
min

|z|5|z0|
|f(z)|

= max
|z|5|z0|

|g(z)|.

Therefore, applying Lemma 1.1 to g(z), we observe that

z0g
′(z0)

g(z0)
= −z0f

′(z0)
f(z0)

= m

which shows (2.1) and

Re
z0g

′′(z0)
g′(z0)

+ 1 = Re
(

z0f
′′(z0)

f ′(z0)
− 2

z0f
′(z0)

f(z0)

)
+ 1

= Re
z0f

′′(z0)
f ′(z0)

+ 2m + 1

= m

which implies (2.2), where

m = n
|g(z0)− c|2

|g(z0)|2 − |c|2
= n

|a− f(z0)|2

|a|2 − |f(z0)|2
= n

|a| − |f(z0)|
|a|+ |f(z0)|

.

This completes the assertion of Theorem 2.1. �

Example 2.2. Let us consider the function f(z) given by

f(z) =
a +

(
ei arg(a) − a

)
zn

1− zn

= a + ei arg(a)zn + ei arg(a)z2n + . . . (z ∈ U)

for some complex number a with |a| > 1
2
.

Then, f(z) maps the disk Ur = {z : |z| < r 5 1} onto the domain∣∣∣∣f(z)−
(

a +
ei arg(a)r2n

1− r2n

)∣∣∣∣ 5
rn

1− r2n
.

Thus, we know that there exists a point z0 = rei π
n ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)| = |a| − rn

1− r2n
.
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For such a point z0, we obtain that

z0f
′(z0)

f(z0)
= − nrn

(1 + rn)(|a| − (1− |a|)rn)
= −m

where

m =
nrn

(1 + rn)(|a| − (1− |a|)rn)
> 0.

Therefore, we get that

Re
z0f

′′(z0)
f ′(z0)

+ 1 = n
1− rn

1 + rn
> 0 > −m.

Furthermore, we obtain that

n
|a− f(z0)|2

|a|2 − |f(z0)|2
=

nrn

2|a|+ (2|a| − 1)rn
=

nrn

2
(
|a| − (1− |a|)rn +

1
2
rn

) < m.

Putting a with a real number in Example 2.2, we get Example 2.3.

Example 2.3. Let us consider the function

f(z) =
a + (1− a)zn

1− zn

= a + zn + z2n + . . . (z ∈ U)

for a >
1
2
. Then, it follows that the function f(z) maps the disk Ur onto the domain∣∣∣∣f(z)−

(
a +

r2n

1− r2n

)∣∣∣∣ 5
rn

1− r2n
.

Thus, there exists a point z0 = rei π
n ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)| = a− rn

1− r2n
.

For such a point z0, we obtain

z0f
′(z0)

f(z0)
= − nrn

(1 + rn)(a− (1− a)rn)
= −m

where

m =
nrn

(1 + rn)(a− (1− a)rn)
> 0.
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Therefore, we see that

Re
z0f

′′(z0)
f ′(z0)

+ 1 = n
1− rn

1 + rn
> 0 > −m.

Moreover, we have that

n
|a− f(z0)|2

|a|2 − |f(z0)|2
=

nrn

2a + (2a− 1)rn
=

nrn

2
(

a− (1− a)rn +
1
2
rn

) < m.
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