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STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY THE MEDIUM OF AN INTEGRAL OPERATOR
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The concept of differential subordination was introduced in [2]

by S. S. Miller and P. T .Mocanu and developed in [3], and the concept of

strong differential subordination was introduced in [1] by J. A. Antonino

and S. Romaquera and developed in [4], [5] by Georgia Irina Oros and

Gheorghe Oros. In this paper we define the class Sm
n (α), and we study

strong differential subordination.

1. Introduction and preliminaries

Let U denote the unit disc of the complex plane :

U = {z ∈ C : |z| < 1}

and

U = {z ∈ C : |z| ≤ 1}.

Let H(U × U) denote the class of analytic functions in U × U . In [4], the author has

defined the class

Hζ[a, n] = {f ∈ H(U×U) : f(z, ζ) = a+an(ζ)zn +an+1(ζ)zn+1+ · · · , z ∈ U, ζ ∈ U}

with ak(ζ) holomorphic functions in U , k ≥ n,

Hn(U) = {f ∈ Hζ[a, n] : f(z, ζ) univalent in U for all ζ ∈ U},
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Aζn = {f ∈ Hζ[a, n] : f(z, ζ) = z + a2(ζ)z2 + · · ·+ an(ζ)zn + · · · , z ∈ U, ζ ∈ U}

with Aζ1 = Aζ,

Kζ =
{

f ∈ Hζ[a, n] : Re
zf ′′(z, ζ)
f ′(z, ζ)

+ 1 > 0, z ∈ U, for all ζ ∈ U

}
.

Definition 1.1. [4] Let H(z, ζ), f(z, ζ) be analytic in U × U . The function f(z, ζ)

is said to be strongly subordinate to H(z, ζ), or H(z, ζ) is said to be strongly

superordinate to f(z, ζ), if there exists a function ω analytic in U , ω(0) = 0,

|ω(z)| < 1, such that f(z, ζ) = H[ω(z), ζ], for all ζ ∈ U . In such a case we write

f(z, ζ) ≺≺ H(z, ζ), z ∈ U, ζ ∈ U.

Remark 1.2. (i) If H(z, ζ) is analytic in U × U and univalent in U for all ζ ∈ U ,

Definition (1.1) is equivalent to f(0, ζ) = H[0, ζ], for all ζ ∈ U and

f(U × U) ⊂ H(U × U).

(ii) If H(z, ζ) ≡ H(z) and f(z, ζ) ≡ f(z) then the strong subordination becomes the

usual notion of subordination.

Definition 1.3. [6] For f(z, ζ) ∈ Aζn, n ∈ N∗ ∪ {0}, we define the integral operator:

In : Aζn → Aζn

I0f(z, ζ) = f(z, ζ)

I1f(z, ζ) = If(z, ζ) =
∫ z

0
f(t, ζ)t−1dt

· · ·

Inf(z, ζ) = I(In−1f(z, ζ)) (z ∈ U, ζ ∈ U).

Property 1.4. For f(z, ζ) ∈ Aζn, n ∈ N∗ ∪ {0}, with the integral operator In :

Aζn → Aζn we have:

z[In+1f(z, ζ)]′ = Inf(z, ζ) (z ∈ U, ζ ∈ U).

In order to prove the main results we use the following definitions and lemmas,

adapted to the class defined in [4]:
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Lemma 1.5. [2, 3] (Miller and Mocanu) Let h(z, ζ) be a convex function, with

h(0, ζ) = a and let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ Hζ[a, n]

and

p(z, ζ) +
1
γ

zp′(z, ζ) ≺≺ h(z, ζ)

then

p(z, ζ) ≺≺ g(z, ζ) ≺≺ h(z, ζ),

where

g(z, ζ) =
γ

nzγ/n

∫ z

0

h(t, ζ)t
γ
n−1dt (z ∈ U, ζ ∈ U).

The function g is convex and is the best (a,n) dominant.

Lemma 1.6. [2, 3] (Miller and Mocanu) Let h(z, ζ) be a convex function in U and

let

h(z, ζ) = g(z, ζ) + nαzg′(z, ζ), z ∈ U, ζ ∈ U

where α > 0 and n is a positive integer. If

p(z, ζ) = g(0, ζ) + pn(ζ)zn + pn+1(ζ)zn+1 + · · ·

is holomorphic in U × U and

p(z, ζ) + αzp′(z, ζ) ≺≺ h(z, ζ),

then

p(z, ζ) ≺≺ g(z, ζ)

and this result is sharp.

2. Main results

Definition 2.1. Let α > 1 and m,n ∈ N. We denote by Sm
n (α) the set of functions

f ∈ Aζn that satisfy the inequality

Re[Imf(z, ζ)]′ > α, z ∈ U, ζ ∈ U.
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Theorem 2.2. If α < 1, and m,n ∈ N, then

Sm
n (α) ⊂ Sm+1

n (δ),

where

δ = δ(α, ζ, n) = 2α− ζ +
2(ζ − α)

n
σ

(
1
n

)
and

σ(x) =
∫ 1

0

tx−1

1 + t
dt. (2.1)

Proof. Let f(z, ζ) ∈ Sm
n (α). From Definition 2.1 we have

Re[Imf(z, ζ)]′ > α, z ∈ U, ζ ∈ U. (2.2)

Using Property 1.4, we have

Imf(z, ζ) = z[Im+1f(z, ζ)]′, z ∈ U, ζ ∈ U. (2.3)

Differentiating (2.3), with respect to z, we obtain

[Imf(z, ζ)]′ = [Im+1f(z, ζ)]′ + z[Im+1f(z, ζ)]′′, z ∈ U, ζ ∈ U. (2.4)

We denote by

p(z, ζ) = [Im+1f(z, ζ)]′, z ∈ U, ζ ∈ U, p(0, ζ) = 1, ζ ∈ U. (2.5)

Using (2.5), the relation (2.3) becomes

[Imf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U (2.6)

and replacing in (2.2), we obtain

Re[p(z, ζ) + zp′(z, ζ)] > α, z ∈ U, ζ ∈ U

equivalent to

p(z, ζ) + zp′(z, ζ) ≺≺ ζ + (2α− ζ)z
1 + z

= h(z, ζ). (2.7)

Using Lemma 1.5, we obtain

p(z, ζ) ≺≺ q(z, ζ) ≺≺ h(z, ζ)
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where

q(z, ζ) =
1

nz
1
n

∫ z

0

ζ + (2α− ζ)t
1 + t

t
1
n−1dt = 2α− ζ +

2(ζ − α)
n

σ(x),

where σ(x) is given by (2.1). The function q(z, ζ) is convex and is the best dominant.

With p(z, ζ) ≺≺ q(z, ζ) and q(z, ζ) being convex, and the fact that the image of U×U

through g(z, ζ) is symmetric with respect to the real axis, we deduce that

Re p(z, ζ) > g(1, ζ) = 2α− ζ +
2(ζ − α)

n
σ(

1
n

) = δ(α, ζ, n) = δ, (2.8)

equivalent to

Re[Im+1f(z, ζ)]′ > δ, z ∈ U, ζ ∈ U. (2.9)

Using Definition 2.1 we obtain f ∈ Sm+1
n (δ). Since f ∈ Sm

n (α), we obtain that

Sm
n (α) ⊂ Sm+1

n (δ).

�

Theorem 2.3. Let h(z, ζ) an analytic function from U × U , with h(0, ζ) = 1,

h′(0, ζ) 6= 0, ζ ∈ U , that satisfies inequality

Re[1 +
zh′′(z, ζ)
h′(z, ζ)

] > −1
2
.

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.10)

then

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ)

where

g(z, ζ) =
1

nz
1
n

∫ z

0

h(t, ζ)t
1
n−1dt, z ∈ U, ζ ∈ U.

The function g is convex and is the best dominant.

201



ROXANA ŞENDRUŢIU

Proof. A simple application of the differential subordination technique [1, 2], shows

that the function g(z, ζ) is convex. By using (2.6), the strong differential subordina-

tion (2.10) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ). (2.11)

Using Lemma 1.5, we have

p(z, ζ) ≺≺ g(z, ζ) =
1

nz
1
n

∫ z

0

h(t, ζ)t
1
n−1dt.

Using (2.5), we obtain

[Im+1f(z, ζ)]′ ≺≺ 1
nz

1
n

∫ z

0

h(t, ζ)t
1
n−1dt.

�

Theorem 2.4. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and suppose that

h(z, ζ) = g(z, ζ) + zg′(z, ζ), z ∈ U, ζ ∈ U.

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.12)

then

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ).

Proof. By using (2.6), the strong differential subordination (2.12) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + zg′(z, ζ) ≡ h(z, ζ).

Using Lemma 1.6, we have

p(z, ζ) ≺≺ g(z, ζ)

and using the notation (2.5), we obtain

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ).

�
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Theorem 2.5. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and the function

h(z, ζ), given by

h(z, ζ) = g(z, ζ) + nzg′(z, ζ).

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.13)

then
Imf(z, ζ)

z
≺≺ g(z, ζ).

Proof. We denote with

p(z, ζ) =
Imf(z, ζ)

z
, z ∈ U, ζ ∈ U, p(0, ζ) = 1. (2.14)

Using (2.14), we obtain

Imf(z, ζ) = zp(z, ζ), z ∈ U, ζ ∈ U. (2.15)

Differentiating (2.15), with respect to z, we obtain

[Imf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U. (2.16)

Using (2.16), the strong differential subordination (2.13) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + nzg′(z, ζ).

Using Lemma 1.6, we have

p(z, ζ) ≺≺ g(z, ζ), i.e.
Imf(z, ζ)

z
≺≺ g(z, ζ).

�

Example 2.6. Let g(z, ζ) be the function

g(z, ζ) =
1 + (2α− ζ)z

1 + z
, z ∈ U, ζ ∈ U, g(0, ζ) = 1, α ∈ R, α < 1. (2.17)

We verify that g(z, ζ) is a convex function. Differentiating (2.17), with respect to z,

we obtain

Re
[
zg′′(z, ζ)
g′(z, ζ)

+ 1
]

= Re
[
1− z

1 + z

]
> 0.

203



ROXANA ŞENDRUŢIU

From the Theorem (2.4), and using (2.17) we obtain that

h(z, ζ) = g(z, ζ) + zg′(z, ζ) =
1 + (2α− ζ)z(2 + z)

(1 + z)2
, z ∈ U, ζ ∈ U. (2.18)

For α = 0 we obtain

h(z, ζ) =
1− ζz(2 + z)

(1 + z)2
.

We consider the function

g(z, ζ) =
z − ζ

z2

2
1 +

z

2

.

By Theorem (2.4) we obtain that, the strong differential subordination

1− ζz − ζ
z2

4
(1 +

z

2
)2

≺≺ 1− ζz(2 + z)
(1 + z)2

implies
1− ζ

z

2
1 +

z

2

≺≺ 1− ζz

1 + z
.

Example 2.7. Let h(z, ζ) be the function

h(z, ζ) =
ζ + z

ζ − z
, z ∈ U, ζ ∈ U, h(0, ζ) = 1. (2.19)

Let g(z, ζ) be a convex function with g(0, ζ) = 1 and

h(z, ζ) = g(z, ζ) + zg′(z, ζ), z ∈ U, ζ ∈ U.

That implies

g(z, ζ) =
1
z

∫ z

0

h(t, ζ)dt =
1
z

∫ z

0

ζ + t

ζ − t
dt

and

g(z, ζ) =
−2ζ

z
log(ζ − z) +

2ζ

z
log(ζ)− 1.

By Theorem (2.4) we obtain that, the strong differential subordination

2ζ + z

2ζ − z
≺≺ ζ + z

ζ − z

implies

−4ζ

z
log(2ζ − z) +

4ζ

z
log(2ζ)− 1 ≺≺ −2ζ

z
log(ζ − z) +

2ζ

z
log(ζ)− 1.
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