STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume ${\bf LV},$ Number 3, September 2010

STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED BY THE MEDIUM OF AN INTEGRAL OPERATOR

ROXANA ŞENDRUŢIU

Dedicated to Professor Grigore Ștefan Sălăgean on his 60th birthday

Abstract. The concept of differential subordination was introduced in [2] by S. S. Miller and P. T. Mocanu and developed in [3], and the concept of strong differential subordination was introduced in [1] by J. A. Antonino and S. Romaquera and developed in [4], [5] by Georgia Irina Oros and Gheorghe Oros. In this paper we define the class $S_n^m(\alpha)$, and we study strong differential subordination.

1. Introduction and preliminaries

Let U denote the unit disc of the complex plane :

$$U = \{ z \in \mathbb{C} : |z| < 1 \}$$

and

$$\overline{U} = \{ z \in \mathbb{C} : |z| \le 1 \}.$$

Let $\mathcal{H}(U \times \overline{U})$ denote the class of analytic functions in $U \times \overline{U}$. In [4], the author has defined the class

$$\mathcal{H}\zeta[a,n] = \{ f \in \mathcal{H}(U \times \overline{U}) : f(z,\zeta) = a + a_n(\zeta)z^n + a_{n+1}(\zeta)z^{n+1} + \cdots, z \in U, \zeta \in \overline{U} \}$$

with $a_k(\zeta)$ holomorphic functions in $\overline{U}, k \ge n$,

$$\mathcal{H}_n(U) = \{ f \in \mathcal{H}\zeta[a, n] : f(z, \zeta) \text{ univalent in } U \text{ for all } \zeta \in \overline{U} \}$$

Received by the editors: 10.05.2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C80, Secondary 30C45, 30A20.

Key words and phrases. Analytic function, differential subordination, strong differential subordination, univalent function, convex function, dominant.

ROXANA ŞENDRUŢIU

 $\mathcal{A}\zeta_n = \{ f \in \mathcal{H}\zeta[a,n] : f(z,\zeta) = z + a_2(\zeta)z^2 + \dots + a_n(\zeta)z^n + \dots, z \in U, \zeta \in \overline{U} \}$ with $\mathcal{A}\zeta_1 = \mathcal{A}\zeta$,

$$K\zeta = \left\{ f \in \mathcal{H}\zeta[a,n] : \operatorname{Re} \frac{zf''(z,\zeta)}{f'(z,\zeta)} + 1 > 0, \ z \in U, \text{ for all } \zeta \in \overline{U} \right\}.$$

Definition 1.1. [4] Let $H(z,\zeta)$, $f(z,\zeta)$ be analytic in $U \times \overline{U}$. The function $f(z,\zeta)$ is said to be strongly subordinate to $H(z,\zeta)$, or $H(z,\zeta)$ is said to be strongly superordinate to $f(z,\zeta)$, if there exists a function ω analytic in U, $\omega(0) = 0$, $|\omega(z)| < 1$, such that $f(z,\zeta) = H[\omega(z),\zeta]$, for all $\zeta \in \overline{U}$. In such a case we write $f(z,\zeta) \prec \prec H(z,\zeta)$, $z \in U, \zeta \in \overline{U}$.

Remark 1.2. (i) If $H(z,\zeta)$ is analytic in $U \times \overline{U}$ and univalent in U for all $\zeta \in \overline{U}$, Definition (1.1) is equivalent to $f(0,\zeta) = H[0,\zeta]$, for all $\zeta \in \overline{U}$ and

$$f(U \times \overline{U}) \subset H(U \times \overline{U}).$$

(ii) If $H(z,\zeta) \equiv H(z)$ and $f(z,\zeta) \equiv f(z)$ then the strong subordination becomes the usual notion of subordination.

Definition 1.3. [6] For $f(z,\zeta) \in \mathcal{A}\zeta_n$, $n \in \mathbb{N}^* \cup \{0\}$, we define the integral operator: $I^n : \mathcal{A}\zeta_n \to \mathcal{A}\zeta_n$

$$I^{0}f(z,\zeta) = f(z,\zeta)$$

$$I^{1}f(z,\zeta) = If(z,\zeta) = \int_{0}^{z} f(t,\zeta)t^{-1}dt$$
...
$$I^{n}f(z,\zeta) = I(I^{n-1}f(z,\zeta)) \qquad (z \in U,\zeta \in \overline{U}).$$

Property 1.4. For $f(z,\zeta) \in \mathcal{A}\zeta_n$, $n \in \mathbb{N}^* \cup \{0\}$, with the integral operator I^n : $\mathcal{A}\zeta_n \to \mathcal{A}\zeta_n$ we have:

$$z[I^{n+1}f(z,\zeta)]' = I^n f(z,\zeta) \qquad (z \in U, \zeta \in \overline{U}).$$

In order to prove the main results we use the following definitions and lemmas, adapted to the class defined in [4]:

Lemma 1.5. [2, 3] (Miller and Mocanu) Let $h(z,\zeta)$ be a convex function, with $h(0,\zeta) = a$ and let $\gamma \in \mathbb{C}^*$ be a complex number with $\operatorname{Re} \gamma \geq 0$. If $p \in \mathcal{H}\zeta[a,n]$ and

$$p(z,\zeta) + \frac{1}{\gamma} z p'(z,\zeta) \prec \prec h(z,\zeta)$$

then

$$p(z,\zeta)\prec\prec g(z,\zeta)\prec\prec h(z,\zeta),$$

where

$$g(z,\zeta) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t,\zeta) t^{\frac{\gamma}{n}-1} dt \quad (z \in U, \zeta \in \overline{U}).$$

The function g is convex and is the best (a,n) dominant.

Lemma 1.6. [2, 3] (Miller and Mocanu) Let $h(z, \zeta)$ be a convex function in U and let

$$h(z,\zeta) = g(z,\zeta) + n\alpha z g'(z,\zeta), \quad z \in U, \zeta \in \overline{U}$$

where $\alpha > 0$ and n is a positive integer. If

$$p(z,\zeta) = g(0,\zeta) + p_n(\zeta)z^n + p_{n+1}(\zeta)z^{n+1} + \cdots$$

is holomorphic in $U\times\overline{U}$ and

$$p(z,\zeta) + \alpha z p'(z,\zeta) \prec \prec h(z,\zeta),$$

then

$$p(z,\zeta) \prec \prec g(z,\zeta)$$

and this result is sharp.

2. Main results

Definition 2.1. Let $\alpha > 1$ and $m, n \in \mathbb{N}$. We denote by $S_n^m(\alpha)$ the set of functions $f \in A\zeta_n$ that satisfy the inequality

$$Re[I^m f(z,\zeta)]' > \alpha, \quad z \in U, \zeta \in \overline{U}.$$

ROXANA ŞENDRUŢIU

Theorem 2.2. If $\alpha < 1$, and $m, n \in \mathbb{N}$, then

$$S_n^m(\alpha) \subset S_n^{m+1}(\delta),$$

where

$$\delta = \delta(\alpha, \zeta, n) = 2\alpha - \zeta + \frac{2(\zeta - \alpha)}{n}\sigma\left(\frac{1}{n}\right)$$

and

$$\sigma(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt.$$
 (2.1)

Proof. Let $f(z,\zeta) \in S_n^m(\alpha)$. From Definition 2.1 we have

$$Re[I^m f(z,\zeta)]' > \alpha, \qquad z \in U, \zeta \in \overline{U}.$$
(2.2)

Using Property 1.4, we have

$$I^m f(z,\zeta) = z[I^{m+1}f(z,\zeta)]', \quad z \in U, \zeta \in \overline{U}.$$
(2.3)

Differentiating (2.3), with respect to z, we obtain

$$[I^m f(z,\zeta)]' = [I^{m+1} f(z,\zeta)]' + z[I^{m+1} f(z,\zeta)]'', \quad z \in U, \zeta \in \overline{U}.$$
 (2.4)

We denote by

$$p(z,\zeta) = [I^{m+1}f(z,\zeta)]', \quad z \in U, \zeta \in \overline{U}, p(0,\zeta) = 1, \zeta \in \overline{U}.$$
(2.5)

Using (2.5), the relation (2.3) becomes

$$[I^m f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta), \qquad z \in U, \zeta \in \overline{U}$$
(2.6)

and replacing in (2.2), we obtain

$$Re[p(z,\zeta) + zp'(z,\zeta)] > \alpha, \quad z \in U, \zeta \in \overline{U}$$

equivalent to

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec \frac{\zeta + (2\alpha - \zeta)z}{1+z} = h(z,\zeta).$$

$$(2.7)$$

Using Lemma 1.5, we obtain

$$p(z,\zeta) \prec \prec q(z,\zeta) \prec \prec h(z,\zeta)$$

STRONG DIFFERENTIAL SUBORDINATIONS

where

$$q(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z \frac{\zeta + (2\alpha - \zeta)t}{1+t} t^{\frac{1}{n} - 1} dt = 2\alpha - \zeta + \frac{2(\zeta - \alpha)}{n} \sigma(x) dx + \frac{1}{n} \sigma(x) dx + \frac{1}{n}$$

where $\sigma(x)$ is given by (2.1). The function $q(z,\zeta)$ is convex and is the best dominant. With $p(z,\zeta) \prec \prec q(z,\zeta)$ and $q(z,\zeta)$ being convex, and the fact that the image of $U \times \overline{U}$ through $g(z,\zeta)$ is symmetric with respect to the real axis, we deduce that

$$Re \ p(z,\zeta) > g(1,\zeta) = 2\alpha - \zeta + \frac{2(\zeta - \alpha)}{n}\sigma(\frac{1}{n}) = \delta(\alpha,\zeta,n) = \delta,$$
(2.8)

equivalent to

$$Re[I^{m+1}f(z,\zeta)]' > \delta, \quad z \in U, \zeta \in \overline{U}.$$
(2.9)

Using Definition 2.1 we obtain $f \in S_n^{m+1}(\delta)$. Since $f \in S_n^m(\alpha)$, we obtain that

$$S_n^m(\alpha) \subset S_n^{m+1}(\delta).$$

Theorem 2.3. Let $h(z,\zeta)$ an analytic function from $U \times \overline{U}$, with $h(0,\zeta) = 1$, $h'(0,\zeta) \neq 0$, $\zeta \in \overline{U}$, that satisfies inequality

$$Re[1 + \frac{zh''(z,\zeta)}{h'(z,\zeta)}] > -\frac{1}{2}.$$

If $f(z,\zeta) \in A\zeta_n$ and verify the strong differential subordination

$$[I^m f(z,\zeta)]' \prec \prec h(z,\zeta), \tag{2.10}$$

then

$$[I^{m+1}f(z,\zeta)]' \prec \prec g(z,\zeta)$$

where

$$g(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt, \quad z \in U, \zeta \in \overline{U}.$$

The function g is convex and is the best dominant.

Proof. A simple application of the differential subordination technique [1, 2], shows that the function $g(z, \zeta)$ is convex. By using (2.6), the strong differential subordination (2.10) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec h(z,\zeta).$$
(2.11)

Using Lemma 1.5, we have

$$p(z,\zeta) \prec g(z,\zeta) = \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt.$$

Using (2.5), we obtain

$$[I^{m+1}f(z,\zeta)]' \prec \prec \frac{1}{nz^{\frac{1}{n}}} \int_0^z h(t,\zeta) t^{\frac{1}{n}-1} dt.$$

Theorem 2.4. Let $g(z,\zeta)$ be a convex function with $g(0,\zeta) = 1$ and suppose that

$$h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

If $f(z,\zeta) \in A\zeta_n$ and verify the strong differential subordination

$$[I^m f(z,\zeta)]' \prec \prec h(z,\zeta), \tag{2.12}$$

then

$$[I^{m+1}f(z,\zeta)]' \prec \prec g(z,\zeta).$$

Proof. By using (2.6), the strong differential subordination (2.12) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec \prec g(z,\zeta) + zg'(z,\zeta) \equiv h(z,\zeta).$$

Using Lemma 1.6, we have

$$p(z,\zeta) \prec \prec g(z,\zeta)$$

and using the notation (2.5), we obtain

$$[I^{m+1}f(z,\zeta)]' \prec \prec g(z,\zeta).$$

Theorem 2.5. Let $g(z,\zeta)$ be a convex function with $g(0,\zeta) = 1$ and the function $h(z,\zeta)$, given by

$$h(z,\zeta) = g(z,\zeta) + nzg'(z,\zeta).$$

If $f(z,\zeta) \in A\zeta_n$ and verify the strong differential subordination

$$[I^m f(z,\zeta)]' \prec \prec h(z,\zeta), \tag{2.13}$$

then

$$\frac{I^m f(z,\zeta)}{z} \prec \prec g(z,\zeta).$$

Proof. We denote with

$$p(z,\zeta) = \frac{I^m f(z,\zeta)}{z}, \qquad z \in U, \zeta \in \overline{U}, p(0,\zeta) = 1.$$
(2.14)

Using (2.14), we obtain

$$I^m f(z,\zeta) = zp(z,\zeta), \qquad z \in U, \zeta \in \overline{U}.$$
(2.15)

Differentiating (2.15), with respect to z, we obtain

$$[I^m f(z,\zeta)]' = p(z,\zeta) + zp'(z,\zeta), \qquad z \in U, \zeta \in \overline{U}.$$
(2.16)

Using (2.16), the strong differential subordination (2.13) becomes

$$p(z,\zeta) + zp'(z,\zeta) \prec g(z,\zeta) + nzg'(z,\zeta).$$

Using Lemma 1.6, we have

$$p(z,\zeta) \prec \prec g(z,\zeta), \quad i.e. \quad \frac{I^m f(z,\zeta)}{z} \prec \prec g(z,\zeta).$$

Example 2.6. Let $g(z, \zeta)$ be the function

$$g(z,\zeta) = \frac{1 + (2\alpha - \zeta)z}{1 + z}, \quad z \in U, \zeta \in \overline{U}, g(0,\zeta) = 1, \alpha \in \mathbb{R}, \alpha < 1.$$
(2.17)

We verify that $g(z,\zeta)$ is a convex function. Differentiating (2.17), with respect to z, we obtain

$$\operatorname{Re}\left[\frac{zg''(z,\zeta)}{g'(z,\zeta)}+1\right] = \operatorname{Re}\left[\frac{1-z}{1+z}\right] > 0.$$
203

ROXANA ŞENDRUŢIU

From the Theorem (2.4), and using (2.17) we obtain that

$$h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta) = \frac{1 + (2\alpha - \zeta)z(2+z)}{(1+z)^2}, \quad z \in U, \zeta \in \overline{U}.$$
 (2.18)

For $\alpha = 0$ we obtain

$$h(z,\zeta) = \frac{1 - \zeta z(2+z)}{(1+z)^2}.$$

We consider the function

$$g(z,\zeta) = \frac{z - \zeta \frac{z^2}{2}}{1 + \frac{z}{2}}.$$

By Theorem (2.4) we obtain that, the strong differential subordination

$$\frac{1-\zeta z-\zeta \frac{z^2}{4}}{(1+\frac{z}{2})^2} \prec \prec \frac{1-\zeta z(2+z)}{(1+z)^2}$$

implies

$$\frac{1-\zeta\frac{z}{2}}{1+\frac{z}{2}} \prec \prec \frac{1-\zeta z}{1+z}$$

Example 2.7. Let $h(z, \zeta)$ be the function

$$h(z,\zeta) = \frac{\zeta + z}{\zeta - z}, \qquad z \in U, \zeta \in \overline{U}, h(0,\zeta) = 1.$$
(2.19)

Let $g(z,\zeta)$ be a convex function with $g(0,\zeta) = 1$ and

$$h(z,\zeta) = g(z,\zeta) + zg'(z,\zeta), \quad z \in U, \zeta \in \overline{U}.$$

That implies

$$g(z,\zeta) = \frac{1}{z} \int_0^z h(t,\zeta) dt = \frac{1}{z} \int_0^z \frac{\zeta+t}{\zeta-t} dt$$

and

$$g(z,\zeta) = \frac{-2\zeta}{z}log(\zeta - z) + \frac{2\zeta}{z}log(\zeta) - 1.$$

By Theorem (2.4) we obtain that, the strong differential subordination

$$\frac{2\zeta+z}{2\zeta-z}\prec\prec\frac{\zeta+z}{\zeta-z}$$

implies

$$\frac{-4\zeta}{z}\log(2\zeta-z) + \frac{4\zeta}{z}\log(2\zeta) - 1 \prec \prec \frac{-2\zeta}{z}\log(\zeta-z) + \frac{2\zeta}{z}\log(\zeta) - 1.$$

STRONG DIFFERENTIAL SUBORDINATIONS

References

- Antonino, J. A., Romaquera, S., Strong differential subordination to Briot-Bouquet differential equations, Journal of Differential Equations, 114 (1994), 101-105.
- Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michig. Math. J., 28 (1981), 157-171.
- [3] Miller, S. S., Mocanu, P. T., *Differential subordinations.*, Theory and Applications, Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
- [4] Oros, G. I., On a new strong differential subordination, (to appear).
- [5] Oros, G. I., Oros, Gh., Strong differential subordination, Turkish Journal of Mathematics, 32 (2008), 1-11.
- [6] Sălăgean, G. S., Subclasses of univalent functions, Complex Analysis-Fift Romanian-Finnish Seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin 1983.

FACULTY OF ENVIRONMENTAL PROTECTION UNIVERSITY OF ORADEA STR. B-DUL GEN. MAGHERU, NO.26 410048 ORADEA, ROMANIA *E-mail address*: roxana.sendrutiu@gmail.com