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Abstract. In this paper we consider a new class of analytic functions

defined by a generalized differential operator. Inclusion results, structural

formula, coefficient estimates and other properties of this class of functions

are obtained.

1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}.

The Hadamard product or convolution of the functions

f(z) = z +
∞∑

n=2

anzn and g(z) = z +
∞∑

n=2

bnzn

is given by

(f ∗ g) (z) = z +
∞∑

n=2

anbnzn , z ∈ U.

Let f ∈ A. We consider the following differential operator introduced by

Răducanu and Orhan in [7]:

D0
λµf(z) = f(z)

D1
λµf(z) = Dλµf(z) = λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ + µ)f(z)
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Dm
λµf(z) = Dλµ

(
Dm−1

λµ f(z)
)

(1.2)

where 0 ≤ µ ≤ λ and m ∈ N := {1, 2, . . .}.

If the function f is given by (1.1), then from (1.2) we see that:

Dm
λµf(z) = z +

∞∑
n=2

An(λ, µ, m)anzn (1.3)

where

An(λ, µ, m) = [1 + (λµn + λ− µ)(n− 1)]m . (1.4)

If λ = 1 and µ = 0, we get Sălăgean differential operator [9] and if µ = 0, we obtain

the differential operator defined by Al-Oboudi [1].

From (1.3) it follows that Dm
λµf(z) can be written in terms of convolution as

Dm
λµf(z) = (f ∗ g)(z) (1.5)

where

g(z) = z +
∞∑

n=2

An(λ, µ, m)zn. (1.6)

Definition 1.1. We say that a function f ∈ A is in the class Rm
λµ(α, γ) if

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U

for α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0 := {0, 1, 2, . . .}.

Note that:

i. R0
λµ(1, γ) is the subclass of A consisting of functions with <f ′(z) > γ.

ii. Rm
λ0(1, γ) is the class of functions investigated in [1].

iii. Rm
λµ(1, γ) reduces to the class of functions considered in [8].

iv. R0
λµ(α, γ) is the class of functions studied by G. Chunyi and S. Owa in [4].

The main object of this paper is to present a systematic investigation for the

class Rm
λµ(α, γ). In particular, for this class of functions we obtain some inclusion

results, structural formula, extreme points and other properties.

188



ON THE PROPERTIES OF A SUBCLASS OF ANALYTIC FUNCTIONS

2. Inclusion results

In order to prove our inclusion results we need the following lemmas.

Lemma 2.1. ([4]) Let α ≥ 0 and γ ≥ 0. Let D(z) be a starlike function in U and let

N(z) be an analytic function in U such that N(0) = D(0) = 0 and N ′(0) = D′(0) = 1.

If

<
[
(1− α)

N(z)
D(z)

+ α
N ′(z)
D′(z)

]
> γ , z ∈ U

then

<N(z)
D(z)

> γ , z ∈ U.

Lemma 2.2. ([6]) Let h(z) be a convex function in U and let A ≥ 0. Suppose that

B(z) and C(z) are analytic in U with C(0) = 0 and

<B(z) ≥ A + 4
∣∣∣∣C(z)
h′(0)

∣∣∣∣ , z ∈ U.

If p is an analytic function , with p(0) = h(0), which satisfies

Az2p′′(z) + B(z)zp′(z) + p(z) + C(z) ≺ h(z) , z ∈ U

then p(z) ≺ h(z), z ∈ U.

Note that the symbol ” ≺ ” stands for subordination.

Theorem 2.3. Let α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm
λµ(α, γ) ⊂ Rm

λµ(0, γ).

Proof. Suppose f ∈ Rm
λµ(α, γ). Then, from Definition 1.1, we have

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U.

Consider N(z) = Dm
λµf(z). Making use of (1.3) we have N(0) = 0 and N ′(0) = 1.

Let D(z) = z. Since D(z) is starlike in U and D(0) = 0 = D′(0) − 1, from Lemma

2.1, we obtain

<
{

Dm
λµf(z)

z

}
> γ , z ∈ U

which implies f ∈ Rm
λµ(0, γ). Thus Rm

λµ(α, γ) ⊂ Rm
λµ(0, γ) and the proof of the

theorem is completed. �
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Theorem 2.4. Let 0 ≤ β < α, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm
λµ(α, γ) ⊂ Rm

λµ(β, γ).

Proof. If β = 0, from Theorem 2.3, we have Rm
λµ(α, γ) ⊂ Rm

λµ(0, γ).

Let f ∈ Rm
λµ(α, γ) and assume β 6= 0. Then

(1− β)
Dm

λµf(z)
z

+ β(Dm
λµf(z))′ =

β

α

[(
α

β
− 1

)
Dm

λµf(z)
z

+ (1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

]
.

Since f ∈ Rm
λµ(α, γ), making use of Definition 1.1 and Theorem 2.3, we obtain

<
{

(1− β)
Dm

λµf(z)
z

+ β(Dm
λµf(z))′

}
=

β

α

[(
α

β
− 1

)
<

Dm
λµf(z)

z
+ <

{
(1− α)

Dm
λµf(z)

z
+ α(Dm

λµf(z))′
}]

>
β

α

(
α

β
− 1

)
γ +

β

α
γ = γ.

It follows that f ∈ Rm
λµ(β, γ) and thus, Rm

λµ(α, γ) ⊂ Rm
λµ(β, γ). �

Another inclusion result is given in the next theorem.

Theorem 2.5. Let α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm+1
λµ (α, γ) ⊂ Rm

λµ(α, γ).

Proof. Suppose f ∈ Rm+1
λµ (α, γ). Then

<

{
(1− α)

Dm+1
λµ f(z)

z
+ α(Dm+1

λµ f(z))′
}

> γ

which is equivalent to

(1− α)
Dm+1

λµ f(z)
z

+ α(Dm+1
λµ f(z))′ ≺ h(z) , z ∈ U (2.1)

where

h(z) =
1 + (1− 2γ)z

1− z
, z ∈ U. (2.2)

From (1.2), we have

Dm+1
λµ f(z) = λµz2[Dm

λµf(z)]′′ + (λ− µ)z[Dm
λµf(z)]′ + (1− λ + µ)Dm

λµf(z).
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It follows that

R(z) := (1− α)
Dm+1

λµ f(z)
z

+ α(Dm+1
λµ f(z))′

= λµ

{
(1− α)

z2(Dm
λµf(z))′′

z
+ α[z2(Dm

λµf(z))′′]′
}

+(λ− µ)

{
(1− α)

z(Dm
λµf(z))′

z
+ α[z(Dm

λµf(z))′]′
}

+(1− λ + µ)
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
.

Denote

p(z) = (1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′ , z ∈ U. (2.3)

Simple calculations show that

R(z) = λµz2p′′(z) + (2λµ + λ− µ)zp′(z) + p(z). (2.4)

Making use of (2.4), the differential subordination (2.1) becomes

λµz2p′′(z) + (2λµ + λ− µ)zp′(z) + p(z) ≺ h(z) , z ∈ U.

It is easy to check that conditions of Lemma 2.2 with h(z) given by (2.2), p(z) given

by (2.3), A = λµ, B(z) ≡ 2λµ + λ − µ and C(z) ≡ 0 are satisfied. Thus, we obtain

p(z) ≺ h(z) which implies that

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U.

Therefore, f ∈ Rm
λµ(α, γ) and the proof of our theorem is completed. �

3. Structural formula

In this section a structural formula, extreme points, coefficient bounds for

functions in Rm
λµ(α, γ) are given.

Theorem 3.1. A function f ∈ A is in the class Rm
λµ(α, γ) if and only if it can be

expressed as

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ) (3.1)
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where µ(ζ) is the probability measure defined on the unit circle

T = {ζ ∈ C : |ζ| = 1} .

Proof. Definition 1.1 implies that f ∈ Rm
λµ(α, γ) if and only if

(1− α)Dm
λµf(z)

z + α(Dm
λµf(z))′ − γ

1− γ
= p(z) , z ∈ U (3.2)

where p(z) belongs to the class P consisting of normalized analytic functions which

have positive real part in U.

From (3.2) we have

(1− α)
Dm

λµf(z)− γz

z
+ α[(Dm

λµf(z))′ − γ] = (1− γ)p(z). (3.3)

If α 6= 0, multiplying both sides of (3.3) by 1
αz

1
α−1, we obtain[

z
1
α−1(Dm

λµf(z)− γz)
]′

= z
1
α−1 1− γ

α
p(z).

Using Herglotz expression of functions in the class P, we have[
z

1
α−1(Dm

λµf(z)− γz)
]′

= z
1
α−1 1− γ

α

∫
|ζ|=1

1 + ζz

1− ζz
dµ(ζ).

Integrating both sides of this equality we get

z
1
α−1(Dm

λµf(z)− γz) =
∫ z

0

[
u

1
α−1 1− γ

α

∫
|ζ|=1

1 + ζu

1− ζu
dµ(ζ)

]
du

which is equivalent to

Dm
λµf(z) =

1
α

∫
|ζ|=1

[
z1− 1

α

∫ z

0

u
1
α−1 1 + ζu(1− 2γ)

1− ζu
du

]
dµ(ζ).

So we have

Dm
λµf(z) =

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ). (3.4)

From (1.5), (1.6) and (3.4) it follows that

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ).

Since this deductive process can be converse, we have proved our theorem. �
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Remark 3.2. If α = 0, the expression (3.1) is also true and it says that if f ∈ A

satisfies <
Dm

λµf(z)
z

> γ, then f can be expressed as

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

]
dµ(ζ).

Corollary 3.3. The extreme points of the class Rm
λµ(α, γ) are

fζ(z) = z + 2(1− γ)ζ̄
∞∑

n=2

(ζz)n

[1 + (n− 1)α]An(λ, µ, m)
, z ∈ U , |ζ| = 1. (3.5)

Proof. Denote

[Dm
λµf(z)]ζ = z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α
.

Then, equality (3.4) can be written as

[Dm
λµf(z)]µ =

∫
|ζ|=1

[Dm
λµf(z)]ζdµ(ζ).

Since probability measures {µ} and class P are one-to-one it follows that the map

µ → [Dm
λµf(z)]µ is one-to-one and the assertion follows (see [5]). �

Making use of Corollary 3.3 we can obtain coefficients bounds for the functions

in the class Rm
λµ(α, γ).

Corollary 3.4. If f ∈ Rm
λµ(α, γ), then

|an| ≤
2(1− γ)

[1 + (n− 1)α]An(λ, µ, m)
, n ≥ 2.

The result is sharp.

Proof. The coefficient bounds are maximized at an extreme point so, the result

follows from (3.5). �

Corollary 3.5. If f ∈ Rm
λµ(α, γ), then for |z| = r < 1

|f(z)| ≥ r − 2(1− γ)r2
∞∑

n=2

1
[1 + (n− 1)α]An(λ, µ, m)

|f(z)| ≤ r + 2(1− γ)r2
∞∑

n=2

1
[1 + (n− 1)α]An(λ, µ, m)
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and

|f ′(z)| ≥ 1− 2(1− γ)r
∞∑

n=2

n

[1 + (n− 1)α]An(λ, µ, m)

|f ′(z)| ≤ 1 + 2(1− γ)r
∞∑

n=2

n

[1 + (n− 1)α]An(λ, µ, m)

4. Convolution property

In order to prove a convolution property for the class Rm
λµ(α, γ) we need the

following result.

Lemma 4.1. ([10]) If p(z) is analytic in U, p(0) = 1 and <p(z) > 1
2 , then for any

analytic function F in U, the function F ∗ p takes values in the convex hull of F (U).

Theorem 4.2. The class Rm
λµ(α, γ) is closed under the convolution with a convex

function. That is, if f ∈ Rm
λµ(α, γ) and g is convex in U, then f ∗ g ∈ Rm

λµ(α, γ).

Proof. It is known that, if g is a convex function in U, then

<g(z)
z

>
1
2
.

Suppose that f ∈ Rm
λµ(α, γ). Making use of the convolution properties, we have

<
{

(1− α)
Dm

λµ(f ∗ g)(z)
z

+ α[Dm
λµ(f ∗ g)(z)]′

}
=

<
{[

(1− α)
Dm

λµf(z)
z

+ α[Dm
λµf(z)]′

]
∗ g(z)

z

}
.

Using Lemma 4.1, the result follows. �

Corollary 4.3. The class Rm
λµ(α, γ) is invariant under Bernardi integral operator [3]

defined by

Fc(f)(z) =
1 + c

zc

∫ z

0

tc−1f(t)dt , <c > 0.

Proof. Assume f ∈ Rm
λµ(α, γ). It is easy to check that Fc(f)(z) = (f ∗ g)(z), where

g(z) =
∞∑

n=1

1 + c

n + c
zn.

Since the function g is convex (see [2]), the result follows by applying Theorem 4.2.

Therefore, Fc[Rm
λµ(α, γ)] ⊂ Rm

λµ(α, γ). �
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