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Abstract. In this paper we generalize the results of Libera and McGregor

concerning argument property of analytic functions. We use the result in

[3] to prove the following:

Theorem. Let

f(z) = z +

∞∑
n=p+K

anzn, g(z) = z +

∞∑
n=p+K

bnzn

be analytic in ∆, f(z) 6= 0 in 0 < |z| < 1, and suppose that for some α, β

(0 < α < 1, 0 < β < 1)∣∣∣∣arg

(
f ′(z)

g′(z)

)∣∣∣∣ <
π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

in ∆, and that
g′(z)

zg(z)
≺ 1 + βz

1− βz
where ≺ means subordination. Then we

have ∣∣∣∣arg

(
f(z)

g(z)

)∣∣∣∣ <
π

2
α in ∆.

1. Introduction

Let f and g be analytic in the unit disk ∆ = {z : |z| < 1} f(0) = g(0) = 0, g

maps ∆ onto a many sheeted domain which is starlike with respect to the origin, and

Re
f ′(z)
g′(z)

> 0 in ∆ .

Then Libera [1] proved

Re
f(z)
g(z)

> 0 in ∆ .
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The essential ideas of the proof of the above result are the same as given by Sakaguchi

[6].

On the other hand, MacGregor [2] proved that for real β,

Re
f ′(z)
g′(z)

> β in ∆.

implies

Re
f(z)
g(z)

> β in ∆.

Ponnusamy and Karunakaran [4] generalized the above results as the following:

Theorem 1.1. Let α be a complex number satisfying Reα > 0 and β < 1. Let

f(z) = zp +
∞∑

n=p+K

anzn, g(z) = zp +
∞∑

n=p+K

bnzn

are analytic in ∆ for 1 ≤ p, 1 ≤ K and that g satisfies

Re
(

α
g(z)
g′(z)

)
> δ in ∆

where

0 ≤ δ <
Reα
p

.

If

Re
{

(1− α)
f(z)
g(z)

+ α
f ′(z)
g′(z)

}
> β in ∆.

Then

Re
f(z)
g(z)

>
2β + Kδ

2 + Kδ
in ∆.

Putting α = 1 in Theorem 1.1, it follows that

Corollary 1.2. If

f(z) = zp +
∞∑

n=p+K

anzn , 1 ≤ p, 1 ≤ pK and g(z) = zp +
∞∑

n=p+K

bnzn

are analytic in ∆ and g satisfies

Re
g(z)

zg′(z)
> δ in ∆

where 0 ≤ δ < 1
p then for β real

f ′(z)
g′(z)

) > β in ∆
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implies

Re
f(z)
g(z)

>
2β + Kδ

2 + Kδ
in ∆.

For a argument properties of analytic functions, Pommerenke [5] obtained the follow-

ing result. If f is analytic in ∆ and h is convex in ∆ and∣∣∣∣arg
(

f ′(z)
h′(z)

)∣∣∣∣ <
απ

2
(0 ≤ α ≤ 1)

then ∣∣∣∣arg
(

f(z2)− f(z1)
h(z2)− h(z1)

)∣∣∣∣ <
απ

2
where

|z1| < 1 and |z2| < 1.

2. Main theorem

In this short paper, we will obtain a generalization of Libera’s result by

applying Nunokawa’s result [3].

Lemma 2.1. Let p be analytic in ∆, p(0) = 1, p(z) 6= 0 in ∆ and suppose that there

exists a point z0 ∈ ∆ such that

| arg p(z0)| <
π

2
α for |z| < |z0|

and

| arg p(z0)| =
π

2
α

where 0 < α.

Then we have
z0p

′(z0)
p(z0)

= iKα

where

K ≥ 1
2

(
a +

1
a

)
when arg p(z0) =

π

2
α

and

K ≤ −1
2

(
a +

1
a

)
when arg p(z0) = −π

2
α

where

arg p(z0)
1
α = ±ia and 0 < a
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Theorem 2.2. Let

f(z) = z +
∞∑

n=2

anzn

be analytic in ∆ f(z) 6= 0 in 0 < |z| < 1 ,

g(z) = z +
∞∑

n=2

bnzn

be analytic in ∆ and suppose

| arg(
f ′(z)
g′(z)

)| < π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

in ∆ where 0 < α < 1, 0 < β < 1 and

zg′(z)
g(z)

≺ 1 + βz

1− βz

where ≺ means the subordination. Then we have∣∣∣∣arg
(

f(z)
g(z)

)∣∣∣∣ <
π

2
α in ∆.

Proof. Let us put

p(z) =
f(z)
g(z)

, p(0) = 1

Then it follows that
f ′(z)
g′(z)

= p(z) +
g(z)
g′(z)

p′(z)

= p(z)
(

1 +
g(z)

zg′(z)
.
zp′(z)
p(z)

)
.

If there exist a point z0, |z0| < 1 such that

| arg p(z)| < π

2
α for |z| < |z0|

and

| arg p(z0)| =
π

2
α

then from Lemma 2.1 we have

z0p
′(z0)

p(z0)
= iKα.
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From the hypothesis, we have the image of the circle ∆ under the mapping w = 1+βz
1−βz

is contained in the circle whose center is 1+β2

1−β2 with radius 2β
1−β2 . Applying the above

properties, for the case

arg p(z0) =
π

2
α,

we have

arg
f ′(z0)
g′(z0

= arg p(z0) + arg
(

1 + iαK
g(z0)
g′(z0)

)
≥ π

2
α + Tan−1δK − Tan−1 δK√

1 + (ρ2 − δ2)K2

where ρ = α(1+β2)
1−β2 , δ = 2αβ

1−β2 and then it follows that

ρ2 − δ2 = α2.

Now let us put

F(K) = Tan−1δK − Tan−1 δK√
1 + (ρ2 − δ2)K2

, 1 ≤ K.

Then we have

F′(K) =
δ

1 + δ2K2
−

(
δ(1− (ρ2 − δ2)K2)− δ(ρ2 − δ2)K2

(1 + (ρ2 − δ2)K2)
3
2

)
(1 + (ρ2 − δ2)K2)

1 + ρ2K2

=
δ

1 + δ2K2
− δ

(1 + ρ2K2)
√

1 + (ρ2 − δ2)K2

>
δ

1 + δ2K2
− δ

1 + ρ2K2

=
δ(ρ2 − δ2)

(1 + δ2K2)(1 + ρ2K2)
> 0.

This shows that F (K) takes the minimum value at K = 1. Therefore we have

arg
f ′(z0)
g′(z0)

≥ π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

This contradicts the hypothesis and for the case arg p(z0) = −π
2 α, applying the same

method as the above, we have

arg
f ′(z0)
g′(z0)

≤ −
(

π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

)
.

This is also contradiction and it completes the proof. �

167



MAMORU NUNOKAWA AND ALPHA MAMADOU BAH

3. Acknowledgement

The second author is grateful to Yahata Memorial Ikuei Foundation Japan

for grant assistance.

References

[1] Libera, R. J., Some classes for univalent functions, Proc. Amer. Math. Soc., 16 (1965),

755-758.

[2] MacGregor, T. H., A subordination for convex function of order α, J. London Math.

Soc., (2)9 (1975), 530-536.

[3] Nunokawa, M., On the orrder of strongly starlikeness of strongly convex functions, Proc.

Japan Acad., 69 (1993), no. 7, 234-237.

[4] Ponnusamy, S., Karunakaran, V., Differential subordination and conformal mappings,

Complex variables, 11 (1989), 79-86.

[5] Pommerenke, Ch., On close-to-convex analytic functions, Trans. Amer. Math. Soc.,

114(1) (1965), 176-186.

[6] Sakaguchi, K., On a certain univalent mappings, J. Math. Soc. Japan, 11 (1959), 72-75.

Department of Mathematics

University of Gunma, Aramaki, Maebashi

Gunma, 371, Japan

Graduate School of Engineering

Applied Mathematics Department

Hiroshima University

739-8527, Hiroshima Japan

E-mail address: bah@hiroshima-u.ac.jp

168


