STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume \mathbf{LV} , Number 3, September 2010

ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS OF COMPLEX ORDER

BASEM A. FRASIN

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The aim of this paper is to find the order of close-to-convexity for certain analytic functions of complex order.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. A function f(z) in \mathcal{A} is said to be starlike function of complex order $\gamma(\gamma \in \mathbb{C} - \{0\})$, if and only if

$$\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>0,\qquad(z\in\mathcal{U}).$$
(1.2)

We denote by $\mathcal{S}(\gamma)$ the class of all such functions. Also, a function f(z) in \mathcal{A} is said to be convex function of complex order $\gamma(\gamma \in \mathbb{C} - \{0\})$, that is, $f \in \mathcal{C}(\gamma)$, if and only if

$$\operatorname{Re}\left\{1+\frac{1}{\gamma}\frac{zf''(z)}{f'(z)}\right\} > 0, \qquad (z \in \mathcal{U}).$$

$$(1.3)$$

The class $S(\gamma)$ was introduced by Nasr and Aouf [7] and the class $C(\gamma)$ was introduced by Wiatrowski [15] and considered in [6] (see also [5], [10], [13] and [2]).

Received by the editors: 01.03.2010.

²⁰⁰⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, starlike and convex functions of complex order, close-to-convex functions.

BASEM A. FRASIN

We note that $f(z) \in \mathcal{C}(\gamma) \Leftrightarrow zf'(z) \in \mathcal{S}(\gamma)$ and $\mathcal{S}(1-\alpha) = \mathcal{S}^*(\alpha), \mathcal{C}(1-\alpha) = \mathcal{C}(\alpha)$ where $\mathcal{S}^*(\alpha)$ and $\mathcal{C}(\alpha)$ denote, respectively, the familiar classes of starlike and convex functions of a real order $\alpha(0 \leq \alpha < 1)$ in \mathcal{U} (see, for example, [14]).

A function f(z) in \mathcal{A} is said to be close-to-convex of complex order $\gamma(\gamma \in \mathbb{C}-\{0\})$, and type $\delta \in \mathbb{R}$ if there exists a function g(z) belonging to $\mathcal{S}(\gamma)$ such that

$$\operatorname{Re}\left\{1+\frac{1}{\gamma}\left(\frac{zf'(z)}{g(z)}-1\right)\right\} > \delta, \qquad (z \in \mathcal{U}).$$

$$(1.4)$$

We denote by $\mathcal{K}(\gamma, \delta)$ the subclass of \mathcal{A} consisting of functions which are close-toconvex of complex order γ and type β in \mathcal{U} . We note that the class $\mathcal{K}(1,0)$ is the class of close-to-convex functions introduced by Kaplan [4] and Ozaki [11].

Pfaltzgraff *et al.*[12] have proved that if f(z) in \mathcal{A} satisfies the condition

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha \qquad (\frac{1}{2} \le \alpha < 1), \tag{1.5}$$

then f(z) in the class S (and convex in at least one direction in U). Furthermore, Cerebiez-Tarabicka et al. [1] have shown that if f(z) in A satisfies the condition

$$\operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > -\frac{1}{2} \qquad (\frac{1}{2} \le \alpha < 1), \tag{1.6}$$

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > 0, \qquad (z \in \mathcal{U}).$$
(1.7)

Recently, Owa [9] proved that if f(z) in \mathcal{A} satisfies the condition

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0 \qquad (z \in \mathcal{U})$$
(1.8)

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \frac{3}{5} \qquad (z \in \mathcal{U}) \tag{1.9}$$

where $g(z) \in \mathcal{S}^*(\alpha/(\alpha+1)), \alpha \ge 0$.

Also, Frasin and Oros [3] proved that if the function f(z) in \mathcal{A} satisfies the condition

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} - \beta\right) > 0 \qquad (z \in \mathcal{U})$$
(1.10)

then

$$\operatorname{Re}\left(\frac{zf'(z)}{g(z)}\right) > \frac{1}{2\beta - 1} \qquad (z \in \mathcal{U})$$
(1.11)

150

ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS OF COMPLEX ORDER

where $g(z) \in \mathcal{S}^*$ and $1 < \beta \leq 3/2$.

In order to show our results, we shall need the following lemma due to Obradovič *et al.*[8].

Lemma 1.1. Let $f \in \mathcal{S}(b)$, $b \in \mathbb{C} - \{0\}$, and let $a \in \mathbb{C} - \{0\}$ with $0 < 2ab \leq 1$. Then

$$Re\left\{\left(\frac{f(z)}{z}\right)^{a}\right\} > 2^{-2ab} \qquad (z \in \mathcal{U}).$$
 (1.12)

2. Main results

With the aid of Lemma 1.1, we can prove the following result.

Theorem 2.1. If the functions f(z) and g(z) are in A and satisfies the conditions

$$Re\left\{1+\frac{1}{b}\left(\frac{zf''(z)}{f'(z)}\right)\right\} > 0 \qquad (z \in \mathcal{U}),$$

$$(2.1)$$

with $0 < 2a\gamma \le 1, \ \gamma = b/ \ (a+1); \ a, b \in \mathbb{C} - \{0\}; \ a \neq -1, \ and$

$$Im\left(\frac{a+1}{b}\right) \le 0 \text{ or } Im\left(\frac{zf'(z)}{g(z)}\right) \le 0,$$
(2.2)

then f(z) belongs to the class $\mathcal{K}(\gamma, \delta)$, where

$$\delta = 1 + \left(2^{\frac{-2ab}{a+1}} - 1\right) Re\left(\frac{a+1}{b}\right).$$

Proof. If we define g(z) by

$$1 + \frac{a+1}{b} \left(\frac{zg'(z)}{g(z)} - 1 \right) = 1 + \frac{1}{b} \left(\frac{zf''(z)}{f'(z)} \right)$$
(2.3)

then from the condition (2.1) and (2.3), we have $g(z) \in \mathcal{S}(\gamma)$, with $\gamma = b/(a+1)$. It is easy to see that (2.3) implies

$$f'(z) = \left(\frac{g(z)}{z}\right)^{a+1} \tag{2.4}$$

or

$$\frac{zf'(z)}{g(z)} = \left(\frac{g(z)}{z}\right)^a \tag{2.5}$$

151

BASEM A. FRASIN

Applying Lemma 1.1 to g(z), we obtain

$$\operatorname{Re}\left\{1 + \frac{a+1}{b}\left(\frac{zf'(z)}{g(z)} - 1\right)\right\} = \operatorname{Re}\left\{1 + \frac{a+1}{b}\left(\left(\frac{g(z)}{z}\right)^{a} - 1\right)\right\}$$
$$= 1 + \operatorname{Re}\left(\frac{a+1}{b}\right)\operatorname{Re}\left\{\left(\frac{g(z)}{z}\right)^{a} - 1\right\}$$
$$- \operatorname{Im}\left(\frac{a+1}{b}\right)\operatorname{Im}\left\{\left(\frac{g(z)}{z}\right)^{a} - 1\right\}$$
$$\geq 1 + \operatorname{Re}\left(\frac{a+1}{b}\right)\operatorname{Re}\left\{\left(\frac{g(z)}{z}\right)^{a} - 1\right\}$$
$$\geq 1 + \left(2^{-2a\gamma} - 1\right)\operatorname{Re}\left(\frac{a+1}{b}\right)$$
$$= 1 + \left(2^{\frac{-2ab}{a+1}} - 1\right)\operatorname{Re}\left(\frac{a+1}{b}\right).$$

This completes the proof of Theorem 2.1.

Letting a = 1 in Theorem 2.1, we have

Corollary 2.2. If the function $f \in C(b)$ with $0 < b \le 2$, then $f \in \mathcal{K}(b/2, \delta)$, where

$$\delta = 1 + \frac{2^{1-b} - 2}{b}.$$

Letting b = 1 in Theorem 2.1, we have

Corollary 2.3. If the functions f(z) and g(z) are in A and satisfies the conditions

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0 \qquad (z \in \mathcal{U}),$$
(2.6)

with $0 < 2a\gamma \le 1$, $\gamma = 1/(a+1)$; $a \in \mathbb{C}-\{0\}$; $a \ne -1$, and

$$Im(a+1) \le 0 \text{ or } Im\left(\frac{zf'(z)}{g(z)}\right) \le 0,$$
(2.7)

then f(z) belongs to the class $\mathcal{K}(\gamma, \delta)$, where

$$\delta = 1 + \left(2^{\frac{-2a}{a+1}} - 1\right) Re(a+1).$$

Letting b = 1 in Corollary 2.2 or a = 1 in Corollary 2.3, we have

152

ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS OF COMPLEX ORDER

Corollary 2.4. Let the functions f(z) and g(z) be in A. If

$$Re\left\{1+\frac{zf''(z)}{f'(z)}\right\} > 0 \qquad (z \in \mathcal{U}),$$
(2.8)

then

$$Re\left(\frac{zf'(z)}{g(z)}\right) > \frac{1}{2} \qquad (z \in \mathcal{U}),$$

$$(2.9)$$

Therefore, if f(z) is convex in U then f(z) is close-to-convex of order 1/2 in U.

Letting b = a + 1 in in Theorem 2.1, we have

Corollary 2.5. Let the functions f(z) and g(z) be in A. If

$$Re\left\{1+\frac{1}{a+1}\left(\frac{zf''(z)}{f'(z)}\right)\right\} > 0 \qquad (z \in \mathcal{U}),$$

$$(2.10)$$

where $0 < a \leq 1/2$, then

$$Re\left\{\frac{zf'(z)}{g(z)}\right\} > \frac{1}{4^a}, \qquad (z \in \mathcal{U}).$$
(2.11)

Letting a = 1/2 in Corollary 2.5, we have

Corollary 2.6. Let the functions f(z) and g(z) be in A. If

$$Re\left\{1+\frac{2}{3}\left(\frac{zf''(z)}{f'(z)}\right)\right\} > 0 \qquad (z \in \mathcal{U}),$$

$$(2.12)$$

then

$$Re\left\{\frac{zf'(z)}{g(z)}\right\} > \frac{1}{2}, \qquad (z \in \mathcal{U}),$$
(2.13)

That is, f(z) is close-to-convex of order 1/2 in \mathcal{U} .

References

- Cerebiez-Tarabicka, K., Godula, J., Zlotkiewics, E., On a class of Bazilevič functions, Ann. Univ. mariae Curie-Sklodowska, 33 (1979), 45-57.
- [2] Frasin, B. A., Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny., 22(2) (2006), 179-191.
- [3] Frasin, B. A., Oros, Gh., Order of certain classes of analytic and univalent functions using Ruscheweyh derivative, General Mathematics, 12(2) (2004), 3-10.
- [4] Kaplan, W., Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169-185.
- [5] Murugusundaramoorthy, G., Srivastava, H. M., Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2) (2004), Art. 24, 1-8. Online: http://jipam.vu.edu.au/article.php?sid=374]

BASEM A. FRASIN

- [6] Nasr, M. A., Aouf, M. K., On convex functions of complex order, Mansoura Sc. Bull. Egypt, 9 (1982), 565-582.
- [7] Nasr, M. A., Aouf, M. K., Starlike functions of complex order, J. Natur. Sci. Math., 25 (1985), 1-12.
- [8] Obradovič, M., Aouf, M. K., Owa, S., On some results for starlike functions of complex order, Publ. De L'Ins. Math., 46(60) (1989),79-85.
- [9] Owa, S., The order of close-to-convexity for certain univalent functions, J. Math. Anal. Appl., 138 (1989), 393-369.
- [10] Owa, S., Sălăgean, G. S., On an open problem of S. Owa, J. Math. Anal. Appl., 218 (1998), 453-457.
- [11] Ozaki, S., On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A, 2 (1935), 167-188.
- [12] Pfaltzgraff, J. A., Reade, M. O., Umezawa, T., Sufficient conditions for univalence, Ann. Fac. Sci. Kinshasa Zaire Sect. Math. Phys., 2 (1976), 94-101.
- [13] Srivastava, H. M., Lashin, A. Y., Some applications of the Briot-Bouquet differential subordination, J. Inequal. Pure Appl. Math., 6(2) (2005), Art. 41, 1-7. Online: http://jipam.vu.edu.au/article.php?sid=510.
- [14] Srivastava, H. M., Owa, S., (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
- [15] Wiatroski, P., On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lődz Nauk. Mat.-Przyrod, 2(39) (1970), 75-85.

Faculty of Science Department of Mathematics Al al-Bayt University, P.O. Box 130095 Mafraq, Jordan *E-mail address*: bafrasin@yahoo.com