CONVOLUTIONS OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS USING A GENERALIZED SĂLĂGEAN OPERATOR

ADRIANA CĂTAȘ

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The object of this paper is to derive several interesting properties of the class $\mathcal{T}_j(n,\gamma,\alpha,\lambda)$ consisting of analytic and univalent functions with negative coefficients. Integral operators and modified Hadamard products of several functions belonging to the class $\mathcal{T}_j(n,\gamma,\alpha,\lambda)$ are studied.

1. Introduction and definitions

Let N denote the set of nonnegative integers $\{0, 1, 2, \dots, n, \dots\}$, $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$ and let $N_j, j \in \mathbb{N}^*$, be the class of functions of the form

$$f(z) = z - \sum_{k=j+1}^{\infty} a_k z^k, \quad a_k \ge 0, \ k \ge j+1, \tag{1.1}$$

which are analytic in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$.

We define the following generalized Sălăgean operator which has been introduced by Al-Oboudi in [1]

$$D^0 f(z) = f(z) \tag{1.2}$$

$$D_{\lambda}^{1}f(z) = (1 - \lambda)f(z) + \lambda z f'(z) = D_{\lambda}f(z), \quad \lambda > 0$$
(1.3)

$$D_{\lambda}^{n} f(z) = D_{\lambda}(D_{\lambda}^{n-1} f(z)). \tag{1.4}$$

Received by the editors: 26.04.2010.

 $^{2000\} Mathematics\ Subject\ Classification.\ 30C45.$

Key words and phrases. Analytic function, univalent function, generalized Sălăgean operator, negative coefficients, modified Hadamard product, integral operator.

If f is given by (1.1), then (1.2), (1.3) and (1.4) yield to a convolution with the functions

$$\psi(n,\lambda) = z - \sum_{k=i+1}^{\infty} [1 + (k-1)\lambda]^n z^k$$

$$D_{\lambda}^{n} f(z) = \psi(n, \lambda) * f(z) = z - \sum_{k=j+1}^{\infty} c_k(n, \lambda) z^k$$

where

$$c_k(n,\lambda) = [1 + (k-1)\lambda]^n, \quad \lambda \ge 0, \ n = 0, 1, 2, \dots$$
 (1.5)

When $\lambda = 1$ we get Sălăgean differential operator [8].

Definition 1.1. [6] Let $\alpha, \gamma \in [0, 1)$, $n \in \mathbb{N}$, $j \in \mathbb{N}^*$. A function f belonging to N_j is said to be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ if and only if

Re
$$\frac{D_{\lambda}^{n+1}f(z)/D_{\lambda}^{n}f(z)}{\gamma(D_{\lambda}^{n+1}f(z)/D_{\lambda}^{n}f(z))+1-\gamma} > \alpha, \quad z \in U.$$
 (1.6)

Remark 1.2. The class $\mathcal{T}_i(n, \gamma, \alpha, \lambda)$ is a generalization of the subclasses

- i) $\mathcal{T}_1(0,0,\alpha,1) = \mathcal{T}^*(\alpha)$ and $\mathcal{T}_1(1,0,\alpha,1) = C(\alpha)$ defined and studied by Silverman [10] (these classes are the class of starlike functions of order α with negative coefficients and the class of convex functions of order α with negative coefficients respectively);
- ii) $\mathcal{T}_j(0,0,\alpha,1)$ and $\mathcal{T}_j(1,0,\alpha,1)$ studied by Chatterjea [4] and Srivastava et al. [11];
 - iii) $\mathcal{T}_1(n,0,\alpha,1) = \mathcal{T}(n,\alpha)$ studied by Hur and Oh [7];
- iv) $\mathcal{T}_1(0, \gamma, \alpha, 1) = \mathcal{T}(\gamma, \alpha)$ and $\mathcal{T}_1(1, \gamma, \alpha, 1) = C(\gamma, \alpha)$ studied by Altintaş and Owa [2];
 - v) $\mathcal{T}_1(n, \gamma, \alpha, 1)$ studied by Aouf and Cho [3], [5].

Theorem 1.3. [6] Let the function f be defined by (1.1). Then f belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ if and only if

$$\sum_{k=j+1}^{\infty} [1 + (k-1)\lambda]^n \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} a_k \le 1 - \alpha.$$
 (1.7)

The result is sharp and the extremal functions are

$$f_k(z) = z - \frac{1 - \alpha}{[1 + (k-1)\lambda]^n \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\}} \cdot z^k$$
 (1.8)

with $k \ge j + 1$.

2. Main results

Let the functions f_i be defined for i = 1, 2, ..., m, by

$$f_i(z) = z - \sum_{k=i+1}^{\infty} a_{k,i} z^k, \quad a_{k,i} \ge 0, \ j \in \mathbb{N}^*, \quad z \in U.$$
 (2.1)

Theorem 2.1. Let the functions f_i defined by (2.1) be in the class $T_j(n, \gamma, \alpha, \lambda)$, for every i = 1, 2, ..., m. Then the functions h defined by

$$h(z) = \sum_{i=1}^{m} d_i f_i(z), \quad d_i \ge 0$$
 (2.2)

where

$$\sum_{i=1}^{m} d_i = 1, \tag{2.3}$$

is also in the same class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$.

Proof. According to the definition of h, we can write

$$h(z) = z - \sum_{k=i+1}^{\infty} \left(\sum_{i=1}^{m} d_i a_{k,i} \right) z^k.$$

Further, since f_i are in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ for every i = 1, 2, ..., m we get

$$\sum_{k=j+1}^{\infty} c_k(n,\lambda) \{ 1 + (k-1)\lambda - \alpha [1 + \gamma(k-1)\lambda] \} a_{k,i} \le 1 - \alpha,$$

where $c_k(n, \lambda)$ is given by (1.5).

Hence we can see that

$$\sum_{k=j+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} \left(\sum_{i=1}^{m} d_i a_{k,i}\right) =$$

$$= \sum_{i=1}^{m} d_i \left(\sum_{k=j+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} a_{k,i} \right) \le$$

$$\leq (1 - \alpha) \sum_{i=1}^{m} d_i = 1 - \alpha,$$

which implies that h is in $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$.

Theorem 2.2. Let the function f defined by (1.1) be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ and let c be any real number such that c > -1. Then the function F defined by

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
 (2.4)

also belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$.

Proof. From the representation (2.4) it follows that

$$F(z) = z - \sum_{k=j+1}^{\infty} b_k z^k$$

where

$$b_k = \left(\frac{c+1}{c+k}\right) a_k.$$

Therefore, we get

$$\sum_{k=j+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} b_k =$$

$$= \sum_{k=j+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} \left(\frac{c+1}{c+k}\right) a_k \le$$

$$\leq \sum_{k=j+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} a_k \leq 1 - \alpha.$$

Hence, by Theorem 1.3, $F \in \mathcal{T}_i(n, \gamma, \alpha, \lambda)$.

Theorem 2.3. Let c be a real number such that c > -1. If the function F belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ then the function f defined by (2.4) is univalent in $|z| < R^*$, where

$$R^* = \inf_{k} \left[\frac{(c+1)c_k(n,\lambda)\{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)k]\}}{(1-\alpha)(c+k)k} \right]^{\frac{1}{k-1}}$$
(2.5)

and $c_k(n, \lambda)$ is given by (1.5). The result is sharp.

Proof. Let

$$F(z) = z - \sum_{k=i+1}^{\infty} a_k z^k, \quad a_k \ge 0.$$

It follows from (2.4) that

$$f(z) = \frac{z^{1-c}[z^c F(z)]'}{c+1} = z - \sum_{k=-i+1}^{\infty} \left(\frac{c+k}{c+1}\right) a_k z^k.$$

In order to obtain the required result, it is sufficient to show that

$$|f'(z) - 1| < 1$$
 whenever $|z| < R^*$.

Now,

$$|f'(z) - 1| \le \sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_k |z|^{k-1}.$$

Thus, |f'(z) - 1| < 1 if

$$\sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_k |z|^{k-1} < 1.$$
(2.6)

But, from Theorem 1.3 we have

$$\sum_{k=i+1}^{\infty} \frac{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}}{1-\alpha} a_k \le 1.$$
 (2.7)

Hence, by using (2.7), (2.6) will be satisfied if

$$\frac{k(c+k)}{c+1}|z|^{k-1} < \frac{c_k(n,\lambda)\{1+(k-1)\lambda - \alpha[1+\gamma(k-1)\lambda]\}}{1-\alpha}$$

that is

$$|z| < \left[\frac{(c+1)c_k(n,\lambda)\{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\}}{(1-\alpha)k(c+k)} \right]^{\frac{1}{k-1}}.$$

Therefore, f is univalent in $|z| < R^*$.

The sharpness follows if we take

$$f_k(z) = z - \frac{(1 - \alpha)(c + k)}{(c + 1)c_k(n, \lambda)\{1 + (k - 1)\lambda - \alpha[1 + \gamma(k - 1)\lambda]\}} z^k$$

$$k \geq j + 1$$
, $c_k(n, \lambda)$ is given by (1.5).

Let the functions f_i , (i = 1, 2) be defined by (2.1). The modified Hadamard product of f_1 and f_2 is defined here by

$$f_1 * f_2(z) = z - \sum_{k=j+1}^{\infty} a_{k,1} a_{k,2} z^k.$$
 (2.8)

Theorem 2.4. Let the function f_1 defined by (2.1) be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ and the function f_2 defined by (2.1) be in the class $\mathcal{T}_j(n, \gamma, \beta, \lambda)$. Then $f_1 * f_2$ belongs to the class $\mathcal{T}_j(n, \gamma, \delta, \lambda)$ where

$$\delta = \delta(n, \gamma, \alpha, \beta, \lambda) = \tag{2.9}$$

$$=1-\frac{j\lambda(1-\gamma)(1-\alpha)(1-\beta)}{(1+j\lambda)^n[1+\lambda j-\alpha(1+\gamma j\lambda)][1+\lambda j-\beta(1+\gamma j\lambda)]-(1+\gamma j\lambda)(1-\alpha)(1-\beta)}$$

The result is best possible for the functions

$$f_1(z) = z - \frac{1 - \alpha}{[1 + j\lambda - \alpha(1 + j\lambda\gamma)](1 + j\lambda)^n} z^{j+1}$$

$$(2.10)$$

and

$$f_2(z) = z - \frac{1 - \beta}{[1 + j\lambda - \beta(1 + j\lambda\gamma)](1 + j\lambda)^n} z^{j+1}.$$
 (2.11)

Proof. Employing the technique used earlier by Schild and Silverman [9], we need to find the largest δ such that

$$\sum_{k=j+1}^{\infty} \frac{c_k(n,\lambda)\{1+(k-1)\lambda-\delta[1+\gamma(k-1)\lambda]\}}{1-\delta} a_{k,1} a_{k,2} \le 1.$$

Since

$$\sum_{k=i+1}^{\infty} \frac{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}}{1-\alpha} a_{k,1} \le 1$$
 (2.12)

and

$$\sum_{k=-i+1}^{\infty} \frac{c_k(n,\lambda)\{1+(k-1)\lambda-\beta[1+\gamma(k-1)\lambda]\}}{1-\beta} a_{k,2} \le 1, \tag{2.13}$$

by the Cauchy-Schwarz inequality, we have

$$\sum_{k=j+1}^{\infty} c_k(n,\lambda) \sqrt{A(\gamma,\alpha,\lambda;k)B(\gamma,\beta,\lambda;k)} \cdot \sqrt{a_{k,1}a_{k,2}} \le 1$$
 (2.14)

where

$$A(\gamma, \alpha, \lambda; k) = \frac{1 + (k - 1)\lambda - \alpha[1 + \gamma(k - 1)\lambda]}{1 - \alpha}$$

and

$$B(\gamma, \beta, \lambda; k) = \frac{1 + (k-1)\lambda - \beta[1 + \gamma(k-1)\lambda]}{1 - \beta}.$$

Thus it is sufficient to show that

$$\sqrt{a_{k,1}a_{k,2}} \leq \frac{(1-\delta)\sqrt{A(\gamma,\alpha,\lambda;k)B(\gamma,\beta,\lambda;k)}}{1+(k-1)\lambda-\delta[1+\gamma(k-1)\lambda]}.$$

Note that

$$\sqrt{a_{k,1}a_{k,2}} \le \frac{1}{c_k(n,\lambda)\sqrt{A(\gamma,\alpha,\lambda,k)B(\gamma,\beta,\lambda,k)}}$$

Consequently, we need only to prove that

$$\frac{1}{c_k(n,\lambda)\sqrt{A(\gamma,\alpha,\lambda;k)B(\gamma,\beta,\lambda;k)}} \leq \frac{(1-\delta)\sqrt{A(\gamma,\alpha,\lambda;k)B(\gamma,\beta,\lambda;k)}}{1+(k-1)\lambda-\delta[1+\gamma(k-1)\lambda]}$$

which is equivalent to

$$\delta \le 1 - \frac{\lambda(k-1)(1-\gamma)(1-\alpha)(1-\beta)}{c_k(n,\lambda)E_{\alpha}(\gamma,\lambda;k)E_{\beta}(\gamma,\lambda;k) - [1+\gamma(k-1)\lambda](1-\alpha)(1-\beta)}$$

where

$$E_{\alpha}(\gamma, \lambda; k) = 1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda] \tag{2.15}$$

and

$$E_{\beta}(\gamma, \lambda, k) = 1 + (k-1)\lambda - \beta[1 + \gamma(k-1)\lambda]. \tag{2.16}$$

If we denote

$$S(n, \gamma, \alpha, \beta, \lambda; k) = \tag{2.17}$$

$$=1-\frac{\lambda(k-1)(1-\gamma)(1-\alpha)(1-\beta)}{c_k(n,\lambda)E_\alpha(\gamma,\lambda;k)E_\beta(\gamma,\lambda;k)-[1+\gamma(k-1)\lambda](1-\alpha)(1-\beta)}$$

one obtains that $S(n, \gamma, \alpha, \beta, \lambda, k)$ is an increasing function of $k, k \geq j + 1$. Letting k = j + 1 in (2.17), we obtain

$$\delta \le S(n, \gamma, \alpha, \beta, \lambda; j+1).$$

This completes the proof of Theorem 2.4.

Theorem 2.5. Let the function f_i , (i = 1, 2) defined by (2.1) be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$. Then $f_1 * f_2(z)$ belongs to the class $\mathcal{T}_j(n, \gamma, \beta, \lambda)$ where

$$\beta = \beta(n, \gamma, \alpha, \lambda) =$$

$$= 1 - \frac{j\lambda(1 - \alpha)^2(1 - \gamma)}{(1 + j\lambda)^n[1 + j\lambda - \alpha(1 + \gamma j\lambda)]^2 - (1 - \alpha)^2(1 + \gamma j\lambda)}.$$
(2.18)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [9], we need to find the largest β such that

$$\sum_{k=i+1}^{\infty} c_k(n,\lambda) \{ 1 + (k-1)\lambda - \beta [1 + \gamma(k-1)\lambda] \} a_{k,1} a_{k,2} \le 1 - \beta.$$

The proof is the same as in the previous theorem.

Finally, by taking the functions f_i , given by

$$f_i(z) = z - \frac{1 - \alpha}{[1 + j\lambda - \alpha(1 + j\lambda\gamma)](1 + j\lambda)^n} z^{j+1}, \quad i = 1, 2$$
 (2.19)

we can see that the result is sharp.

Corollary 2.6. For f_1 and f_2 as in Theorem 2.4, the function

$$h(z) = z - \sum_{k=j+1}^{\infty} \sqrt{a_{k,1} a_{k,2}} z^k$$
 (2.20)

belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$. The result is sharp.

Proof. This result follows from the Cauchy-Schwarz inequality. It is sharp for the same function as in Theorem 2.4.

Corollary 2.7. Let the functions f_i , (i = 1, 2, 3) defined by (2.1) be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$. Then $f_1 * f_2 * f_3$ belongs to the class $\mathcal{T}_j(n, \gamma, \eta, \lambda)$ where

$$\eta = \eta(n, \gamma, \alpha, \lambda) =$$

$$= 1 - \frac{j\lambda(1-\alpha)^3(1-\gamma)}{(1+j\lambda)^{2n}[1+j\lambda-\alpha(1+\gamma j\lambda)]^3 - (1+j\gamma\lambda)(1-\alpha)^3}.$$
(2.21)

The result is best possible for the functions

$$f_i(z) = z - \frac{1 - \alpha}{[1 + j\lambda - \alpha(1 + j\lambda\gamma)](1 + j\lambda)^n} z^{j+1}, \quad i = 1, 2, 3.$$
 (2.22)

Proof. From Theorem 2.5 one obtains that $f_1 * f_2$ belongs to the class $\mathcal{T}_j(n, \gamma, \beta, \lambda)$ where β is given by (2.18). By using Theorem 2.4 we get $f_1 * f_2 * f_3$ belongs to the class $\mathcal{T}_j(n, \gamma, \eta, \lambda)$ where

$$\eta = \eta(n, \gamma, \alpha, \beta, \lambda) = \frac{j\lambda(1-\gamma)(1-\alpha)(1-\beta)}{(1+j\lambda)^n E_{\alpha}(\gamma, \lambda; j+1)E_{\beta}(\gamma, \lambda; j+1) - (1+\gamma j\lambda)(1-\alpha)(1-\beta)}$$

and $E_{\alpha}(\gamma, \lambda; j+1)$, $E_{\beta}(\gamma, \lambda; j+1)$ are given as in (2.15) and (2.16)

Hence, Corollary 2.7 follows at once.

Theorem 2.8. Let the function f_i , (i = 1, 2) defined by (2.1) be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$. Then the function

$$h(z) = z - \sum_{k=i+1}^{\infty} (a_{k,1}^2 + a_{k,2}^2) z^k,$$
 (2.23)

belongs to the class $\mathcal{T}_{j}(n, \gamma, \eta, \lambda)$ where

$$\eta = \eta(n, \gamma, \alpha, \lambda) =$$

$$= 1 - \frac{2j\lambda(1-\alpha)^2(1-\gamma)}{(1+j\lambda)^n[1+j\lambda-\alpha(1+\gamma j\lambda)]^2 - 2(1-\alpha)^2(1+\gamma j\lambda)}.$$
(2.24)

The result is sharp for the functions f_i , (i = 1, 2) defined by (2.19).

Proof. By virtue of Theorem 1.3, one obtains

$$\sum_{k=i+1}^{\infty} \left[\frac{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma\lambda(k-1)]\}}{1-\alpha} \right]^2 a_{k,i}^2 \le$$

$$\leq \left[\sum_{k=j+1}^{\infty} \frac{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}}{1-\alpha}a_{k,i}\right]^2 \leq 1, \quad i=1,2.$$

It follows that

$$\sum_{k=j+1}^{\infty} \frac{1}{2} \left[\frac{c_k(n,\lambda) \{ 1 + (k-1)\lambda - \alpha [1 + \gamma (k-1)\lambda] \}}{1 - \alpha} \right]^2 (a_{k,1}^2 + a_{k,2}^2) \le 1.$$

Therefore, we need to find the largest η such that

$$\frac{c_k(n,\lambda)\{1+(k-1)\lambda-\eta[1+\gamma(k-1)\lambda]\}}{1-\eta} \leq$$

$$\leq \frac{1}{2} \left[\frac{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}}{1-\alpha} \right]^2$$

that is

$$\eta \le 1 - \frac{2\lambda(1-\alpha)^2(k-1)(1-\gamma)}{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}^2 - 2(1-\alpha)^2[1+\gamma(k-1)\lambda]}.$$

Since

$$F(n, \gamma, \alpha, \lambda; k) =$$

$$=1-\frac{2\lambda(1-\alpha)^2(k-1)(1-\gamma)}{c_k(n,\lambda)\{1+(k-1)\lambda-\alpha[1+\gamma(k-1)\lambda]\}^2-2(1-\alpha)^2[1+\gamma(k-1)\lambda]}$$

is an increasing function of k, $(k \ge j + 1)$ we get

$$\eta \le F(n, \gamma, \alpha, \lambda; j+1)$$

and Theorem 2.8 follows at once.

Theorem 2.9. Let the function

$$f_1(z) = z - \sum_{k=j+1}^{\infty} a_{k,1} z^k, \quad a_{k,1} \ge 0$$

be in the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$ and

$$f_2(z) = z - \sum_{k=i+1}^{\infty} |a_{k,2}| z^k,$$

with $|a_{k,2}| \leq 1$. Then $f_1 * f_2$ belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$.

Proof. Since

$$\sum_{k=j+1}^{\infty} c_k(n,\lambda) \{ 1 + (k-1)\lambda - \alpha [1 + \gamma(k-1)\lambda] \} |a_{k,1}a_{k,2}| =$$

$$= \sum_{k=i+1}^{\infty} c_k(n,\lambda) \{1 + (k-1)\lambda - \alpha[1 + \gamma(k-1)\lambda]\} a_{k,1} |a_{k,2}| \le$$

$$\leq \sum_{k=j+1}^{\infty} c_k(n,\lambda) \{ 1 + (k-1)\lambda - \alpha [1 + \gamma(k-1)\lambda] \} a_{k,1} \leq 1 - \alpha$$

by Theorem 1.3, one obtains that $f_1 * f_2$ belongs to the class $\mathcal{T}_j(n, \gamma, \alpha, \lambda)$.

References

- [1] Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator, Inter. J. of Math. and Mathematical Sci., **27** (2004), 1429-1436.
- [2] Altintaş, O., Owa, S., On subclasses of univalent functions with negative coefficients, Pusan Kyongnam Math. J., 4(1988), no. 4, 41-46.
- [3] Aouf, M. K., Cho, N. E., On a certain subclass of analytic functions with negative coefficients, Turkish J. Math., 22 (1998), no. 1, 15-32.
- [4] Chatterjea, S. K., On starlike functions, J. Pure Math., 1 (1981), 23-26.
- [5] Cho, N. E., Aouf, M. K., Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients, Turkish J. Math., 20 (1996), no. 4, 553-562.
- [6] Darwish, H. E., Certain Subclasses of Analytic Functions with Negative Coefficients Defined by Generalized Sălăgean Operator, Gen. Math. Vol., 15, 4 (2007), 69-82.
- [7] Hur, M. D., Oh, G. H., On certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J., 5 (1989), 69-80.
- [8] Sălăgean, G. S., Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, 1013 (1983), 362-372.
- [9] Schild, A., Silverman, H., Convolutions of univalent functions with negative coefficients,
 Ann. Univ. Mariae Curie-Sklodowska Sect. A., 29 (1975), 99-107.
- [10] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
- [11] Srivastava, H. M., Owa, S., Chatterjea, S. K., A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova, 77 (1987), 115-124.

University of Oradea

FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS

1 University Street, 410087, Oradea, Romania

 $E ext{-}mail\ address: acatas@gmail.com}$