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Abstract. Making use of a convolution structure, we introduce a new class

of complex valued harmonic functions which are orientation preserving and

univalent in the open unit disc. Among the results presented in this paper

include the coefficient bounds, distortion inequality and covering property,

extreme points and certain inclusion results for this generalized class of

functions.

1. Introduction and preliminaries

A continuous function f = u+ iv is a complex- valued harmonic function in a

complex domain G if both u and v are real and harmonic in G. In any simply-connected

domain D ⊂ G, we can write f = h + g, where h and g are analytic in D. We call h

the analytic part and g the co-analytic part of f. A necessary and sufficient condition

for f to be locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)|

in D (see [2]).

Denote by H the family of functions

f = h + g (1.1)

which are harmonic, univalent and orientation preserving in the open unit disc U =

{z : |z| < 1} so that f is normalized by f(0) = f ′(0)−1 = 0. Thus, for f = h+g ∈ H,
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the functions h and g analytic U can be expressed in the following forms:

h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn (0 ≤ b1 < 1),

and f(z) is then given by

f(z) = z +
∞∑

n=2

anzn +
∞∑

n=1

bnzn (0 ≤ b1 < 1). (1.2)

We note that the family H of orientation preserving, normalized harmonic univalent

functions reduces to the well known class S of normalized univalent functions if the

co-analytic part of f is identically zero, i.e. g ≡ 0.

For functions f ∈ H given by (1.1) and F ∈ H given by

F (z) = H(z) + G(z) = z +
∞∑

n=2

Anzn +
∞∑

n=1

Bnzn, (1.3)

we recall the Hadamard product (or convolution) of f and F by

(f ∗ F )(z) = z +
∞∑

n=2

anAnzn +
∞∑

n=1

bnBnzn (z ∈ U). (1.4)

In terms of the Hadamard product (or convolution), we choose F as a fixed function

in H such that (f ∗ F )(z) exists for any f ∈ H, and for various choices of F we

get different linear operators which have been studied in recent past. To illustrate

some of these cases which arise from the convolution structure (1.4), we consider the

following examples.

(1) If

F (z) = z +
∞∑

n=2

σn(α1) zn +
∞∑

n=1

σn(α1) zn (1.5)

and σn(α1)is defined by

σn(α1) =
ΘΓ(α1 + A1(n− 1)) . . .Γ(αp + Ap(n− 1))

(n− 1)!Γ(β1 + B1(n− 1)) . . .Γ(βq + Bq(n− 1))
. (1.6)

where Θ is given by

Θ =

(
p∏

m=0

Γ(αm)

)−1( q∏
m=0

Γ(βm)

)
(1.7)
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and then the convolution (1.4)gives the Wright’s generalized hypergeometric function

(see [13])

pΨq[(α1, A1), . . . , (αp, Ap); (β1, B1), . . . , (βq, Bq); z] =p Ψq[(αn, An)1,p(βn, Bn)1,q; z]

is defined by

pΨq[(αn, An)1,p(βn, Bn)1,q; z]

=
∞∑

n=0

{
p∏

m=1

Γ(αm + nAm)

}{
q∏

m=1

Γ(βm + nBm)

}−1
zm

n!
(z ∈ U)

which was initially studied by Murugusundaramoorthy (see [9]).

(2) If Am = 1(m = 1, ..., p) and Bm = 1(m = 1, ..., q), then we have the

following obvious relationship

F (z) = z +
∞∑

n=2

Γnzn +
∞∑

n=1

Γnzn, (1.8)

where

Γn =
(α1)n−1 . . . (αp)n−1

(β1)n−1 . . . (βq)n−1

1
(n− 1)!

,

then the convolution (1.4) gives the Dziok–Srivastava operator (see [4]):

Λ(α1, · · · , αp;β1, · · · , βq; z)f(z) ≡ Hp
q(α1, β1)f(z),

where α1, · · · , αp; β1, · · · , βq are positive real numbers, p ≤ q + 1; p, q ∈ N∪ {0} , and

(α)n denotes the familiar Pochhammer symbol (or shifted factorial).

Remark 1.1. When p = 1, q = 1;α1 = a, α2 = 1;β1 = c, then (1.8) corresponds to

the operator due to Carlson-Shaffer operator(see [1]) given by

L(a, c)f(z) := (f ∗ F )(z),

where

F (z) := z +
∞∑

n=2

(a)n−1

(c)n−1
zn +

∞∑
n=1

(a)n−1

(c)n−1
zn (c 6= 0,−1,−2, · · · ). (1.9)
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Remark 1.2. When p = 1, q = 0;α1 = n + 1, α2 = 1;β1 = 1, then (1.8) yields the

Ruscheweyh derivative operator (see [7]) givenDkf(z) := (f ∗ F )(z) where

F (z) = z +
∞∑

n=2

 k + n− 1

n− 1

 zn +
∞∑

n=1

 k + n− 1

n− 1

 zn. (1.10)

which was initially studied by Jahangiri et al.(see [7]).

(3) Lastly, if Dlf(z) = f ∗ F where

F (z) = z +
∞∑

n=2

nlzn + (−1)l
∞∑

n=1

nlzn ( l ≥ 0) , (1.11)

which was initially studied by Jahangiri et al.(see [8]).

For the purpose of this paper, we introduce here a subclass of H denoted by

SH(F ;λ, γ) which involves the convolution (1.3) and consist of all functions of the

form (1.1) satisfying the inequality:

Re
{

z(f(z) ∗ F (z))′

(1− λ)(f(z) ∗ F (z)) + λz(f(z) ∗ F (z))′

}
≥ γ (1.12)

Equivalently

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

(1.13)

where z ∈ U , 0 ≤ λ ≤ 1.

Also denote TH(F ;λ, γ) = SH(F ;λ, γ)
⋂
TH where TH the subfamily of H

consisting of harmonic functions f = h + g of the form

f(z) = z −
∞∑

n=2

anzn +
∞∑

n=1

bnzn (0 ≤ b1 < 1). (1.14)

called the class of harmonic functions with negative coefficients (see [11])

We deem it proper to mention below some of the function classes which

emerge from the function class SH(F ;λ, γ) defined above. Indeed, we observe that if

we specialize the function F by means of (1.5) to (1.11), and denote the correspond-

ing reducible classes of functions of SH(F ; γ), respectively, by Wp
q (λ, γ), Gp

q (λ, γ)

La
c (λ, γ), R(k, λ, γ), Ω(λ, γ) and S(l, λ, γ).
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It is of special interest because for suitable choices of F from (1.6) we can

define the following subclasses:

(i) If F is given by (1.5) we have (f ∗ F )(z) = W p
q [α1]f(z) hence we define a class

Wp
q (λ, γ) satisfying the criteria

Re
{

z(W p
q [α1]f(z))′

(1− λ)W p
q [α1]f(z) + λz(W p

q [α1]f(z))′

}
≥ γ

where W p
q [α1] is the Wright’s generalized operator on harmonic functions (see [9]) .

(ii) If F is given by (1.8) we have (f ∗ F )(z) = Hp
q [α1]f(z) hence we define a class

Gp
q (λ, γ) satisfying the criteria

Re
{

z(Hp
q [α1]f(z))′

(1− λ)Hp
q [α1]f(z) + λz(Hp

q [α1]f(z))′

}
≥ γ

where Hp
q [α1] is the Dziok - Srivastava operator (see [4]).

(iii) H2
1 ([a, 1; c]) = L(a, c)f(z), hence we define a class La

c (λ, γ)satisfying the criteria

Re
{

zL(a, c)f(z))′

(1− λ)L(a, c)f(z) + λz(L(a, c)f(z))′

}
≥ γ

where L(a, c) is the Carlson - Shaffer operator (see [1]).

(iv) H2
1 ([k + 1, 1; 1]) = Dkf(z), hence we define a class R(k, λ, γ) satisfying the

criteria

Re
{

z(Dkf(z))′

(1− λ)Dkf(z) + λz(Dkf(z))′

}
≥ γ

where Dkf(z)(k > −1) is the Ruscheweyh derivative operator (see [10]) (also see [7]).

(v) H2
1 ([2, 1; 2−µ]) = Ωµ

z f(z) we define another class Ω(λ, γ) satisfying the condition

Re
{

z(Ωµ
z f(z))′

(1− λ)Ωµ
z f(z) + λz(Ωµ

z f(z))′

}
≥ γ

given by

Ωµ
z f(z) = Γ(2− µ)zµDµ

z f(z); (0 ≤ µ < 1),

where Ωµ
z is the Srivastava-Owa fractional derivative operator (see [12]).

(vi) If F is given by (1.11), we haveDlf(z) = (f ∗ F )(z), hence we define a

class S(l, λ, γ) satisfying the criteria

Re
{

z(Dlf(z))′

(1− λ)Dlf(z) + λz(Dlf(z))′

}
≥ γ
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where Dlf(z); (l ∈ N = 0, 1, 2, 3,) is the Sălăgean derivative operator for harmonic

functions (see [8]).

Motivated by the earlier works of (see [5, 8, 13]) on the subject of harmonic

functions, in this paper we obtain a sufficient coefficient condition for functions f

given by (1.2) to be in the class SH(F ;λ, γ). It is shown that this coefficient condition

is necessary also for functions belonging to the class TH(F ;λ, γ). Further, distortion

results and extreme points for functions in TH(F ;λ, γ) are also obtained.

For the sake of brevity we denote the corresponding coefficient of F as Cn

throughout our study unless otherwise stated.

2. Coefficient bounds

In our first theorem, we obtain a sufficient coefficient condition for harmonic

functions in SH(F ;λ, γ).

Theorem 2.1. Let f = h + g be given by (1.2). If

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n + 1)
1− γ

|bn|
]

Cn ≤ 2 (2.1)

where a1 = 1 and 0 ≤ γ < 1, then f ∈ SH(F ;λ, γ).

Proof. We first show that if (2.1) holds for the coefficients of f = h+ g, the required

condition (2.1) is satisfied. From (1.13) we can write

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

= Re
A(z)

B(z)
≥ γ

where

A(z) = zh(z) ∗H(z))′ − z(g(z) ∗G(z))′ = z +

∞∑
n=2

nCnanzn −
∞∑

n=1

nCnbnzn

and

B(z) = (1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

= z +

∞∑
n=2

(1− λ + nλ)Cnanzn +

∞∑
n=1

(1− λ− nλ)Cnbnzn.
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Using the fact that Re {w} ≥ γ if and only if |1 − γ + w| ≥ |1 + γ − w|, it suffices to show

that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (2.2)

Substituting for A(z) and B(z) in (2.2), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

= |(2− γ)z +

∞∑
n=2

[(n + 1− γ)(1− λ + nλ)]Cnanzn −
∞∑

n=1

[n− (1− γ)(1− λ + nλ)]Cnbn zn|

−| − γz +

∞∑
n=2

[n− (1 + γ)(1− λ + nλ)Cnanzn −
∞∑

n=1

[n + (1 + γ)(1− λ + nλ)]Cnbnzn|

≥ (2−γ)|z|−
∞∑

n=2

[n+(1−γ)(1−λ+nλ)Cn|an||z|n −
∞∑

n=1

[n− (1−γ)(1−λ−nλ)]Cn|bn| |z|n

−γ|z| −
∞∑

n=2

[n− (1 + γ)(1− λ + nλ)]Cn|an| |z|n −
∞∑

n=1

[n + (1 + γ)(1− λ− nλ)]Cn|bn| |z|n

≥ 2(1− γ)|z|

{
2−

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)

1− γ
|bn|
]

Cn|z|n−1

}

≥ 2(1− γ)

{
2−

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)

1− γ
|bn|
]

Cn

}
.

The above expression is non negative by (2.1), and so f ∈ SH(F ; λ, γ). �

The harmonic function

f(z) = z+
∞∑

n=2

1− γ

[n− γ − γλ(n− 1)]Cn
xnzn +

∞∑
n=1

1− γ

[n + γ − γλ(n− 1)]Cn
yn(z)n (2.3)

where
∞∑

n=2
|xn|+

∞∑
n=1

|yn| = 1 shows that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in SH(F ;λ, γ) because

∞∑
n=1

(
[n− γ − γλ(n− 1)]Cn

1− γ
|an|+

[n + γ − γλ(n− 1)]Cn

1− γ
|bn|
)

=1 +
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 2.

Next theorem establishes that such coefficient bounds cannot be improved

further.
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Theorem 2.2. For a1 = 1 and 0 ≤ γ < 1, f = h + g ∈ TH(F ;λ, γ) if and only if

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)
1− γ

|bn|
]

Cn ≤ 2. (2.4)

Proof. Since TH(F ;λ, γ) ⊂ SH(F ;λ, γ), we only need to prove the ”only if” part

of the theorem. To this end, for functions f of the form (1.14), we notice that the

condition

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

Equivalently,

Re


(1− γ)z −

∞∑
n=2

[n− γ − γλ(n− 1)]Cnanzn −
∞∑

n=1
[n + γ − γλ(n− 1)]Cnbnzn

z −
∞∑

n=2
(1− λ + nλ)Cnanzn +

∞∑
n=1

(1− λ− nλ)Cnbnzn

≥0.

The above required condition must hold for all values of z in U. Upon choosing the

values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− γ)−
∞∑

n=2

[n− γ − γλ(n− 1)]Cnanrn−1 −
∞∑

n=1

[n + γ − γλ(n− 1)]Cnbnrn−1

1−
∞∑

n=2

(1− λ + nλ)Cnanrn−1 +
∞∑

n=1

(1− λ− nλ)Cnbnrn−1

≥ 0. (2.5)

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r sufficiently

close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient of (2.5) is negative.

This contradicts the required condition for f ∈ TH(F ; λ, γ). This completes the proof of the

theorem. �

3. Distortion bounds and extreme points

The following theorem gives the distortion bounds for functions in TH(F ;λ, γ)

which yields a covering result for the class TH(F ;λ, γ).

Theorem 3.1. Let f ∈ TH(F ;λ, γ). Then for |z| = r < 1, we have

(1− b1)r −
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2 ≤ |f(z)|

≤ (1 + b1)r +
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2.
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Proof. We only prove the right hand inequality. Taking the absolute value of f(z),

we obtain

|f(z)| =

∣∣∣∣∣z +
∞∑

n=2

anzn +
∞∑

n=1

bnzn

∣∣∣∣∣
≤ (1 + b1)|z|+

∞∑
n=2

(an + bn)|z|n

≤ (1 + b1)r +
∞∑

n=2

(an + bn)r2

≤ (1+ b1)r +
(1− γ)

(2− γ − γλ)C2

∞∑
n=2

(
(2− γ − γλ)C2

(1− γ)
an +

(2− γ − γλ)C2

(1− γ)
bn

)
r2

≤ (1 + b1)r +
(1− γ)1

(2− γ − γλ)C2

(
1− 1 + γ

1− γ
b1

)
r2

≤ (1 + b1)r +
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2.

The proof of the left hand inequality follows on lines similar to that of the

right hand side inequality. �

The covering result follows from the left hand inequality given in Theorem 3.1.

Corollary 3.2. If f(z) ∈ TH(F ;λ, γ), then{
w : |w| < 2C2 − 1− [(1 + λ)C2 − 1]γ

(2− γ − γλ)C2
− 2C2 − 1− [(1 + λ)C2 + 1]γ

(2− γ − γλ)C2
|b1|
}
⊂ f(U).

Proof. Using the left hand inequality of Theorem 3.1 and letting r → 1, we prove

that

(1− b1)−
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
= (1− b1)−

1
C2(2− γ − γλ)

[1− γ − (1 + γ)b1]

=
(1− b1)C2(2− γ − γλ)− (1− γ) + (1 + γ)b1

C2(2− γ − γλ)

=
{

2C2 − 1− [(1 + λ)C2 − 1]γ
(2− γ − γλ)C2

− 2C2 − 1− [(1 + λ)C2 + 1]γ
(2− γ − γλ)C2

|b1|
}
⊂ f(U).

�
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Next we determine the extreme points of closed convex hulls of TH(F ;λ, γ)

denoted by clcoTH(F ;λ, γ).

Theorem 3.3. A function f(z) ∈ TH(F ;λ, γ) if and only if

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

where

h1(z) = z, hn(z) = z − 1− γ

[n− γ − γλ(n− 1)]Cn
zn; (n ≥ 2),

gn(z) = z +
1− γ

[n + γ − γλ(n− 1)]Cn
zn;

(n ≥ 2),
∞∑

n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of TH(F ;λ, γ) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

=
∞∑

n=1

(Xn + Yn)z −
∞∑

n=2

1− γ

n[n− γ − γλ(n− 1)]Cn
Xnzn

+
∞∑

n=1

1− γ

[n + γ − γλ(n− 1)]Cn
Ynzn

Then
∞∑

n=2

n[n− γ − γλ(n− 1)]Cn

1− γ
|an|+

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ
|bn|

=
∞∑

n=2

Xn +
∞∑

n=1

Yn

= 1−X1 ≤ 1,

and so f(z) ∈ clcoTH(F ;λ, γ).

Conversely, suppose that f(z) ∈ clcoTH(F ;λ, γ). Setting

Xn =
n[n− γ − γλ(n− 1)]Cn

1− γ
|an|, (0 ≤ Xn ≤ 1, n ≥ 2)

Yn =
n[n + γ − γλ(n− 1)]Cn

1− γ
|bn|, (0 ≤ Yn ≤ 1, n ≥ 1)
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and X1 = 1−
∞∑

n=2
Xn −

∞∑
n=1

Yn. Therefore ,f(z) can be rewritten as

f(z) = z −
∞∑

n=2

anzn +
∞∑

n=1

bnzn

= z −
∞∑

n=2

1− γ

[n− γ − γλ(n− 1)]Cn
Xnzn +

∞∑
n=1

1− γ

[n + γ − γλ(n− 1)]Cn
Ynzn

= z +
∞∑

n=2

(hn(z)− z)Xn +
∞∑

n=1

(gn(z)− z)Yn

= z{1−
∞∑

n=2

Xn −
∞∑

n=1

Yn}+
∞∑

n=2

hn(z)Xn +
∞∑

n=1

gn(z)Yn

=
∞∑

n=1

(Xnhn(z) + Yngn(z)),

as required. �

4. Inclusion results

Now we show that TH(F ;λ, γ) is closed under convex combinations of its

member and also closed under the convolution product.

Theorem 4.1. The family TH(F ;λ, γ) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ TH(F ;λ, γ) where

fi(z) = z −
∞∑

n=2

ai,nzn +
∞∑

n=2

bi,nzn.

Then, by Theorem 2.2

∞∑
n=2

n[n− γ − γλ(n− 1)]Cn

(1− γ)
ai,n +

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

(1− γ)
bi,n ≤ 1. (4.1)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑

n=2

( ∞∑
i=1

tiai,n

)
zn +

∞∑
n=1

( ∞∑
i=1

tibi,n

)
zn.
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Using the inequality (2.4), we obtain

∞∑
n=2

n[n− γ − γλ(n− 1)]Cn

1− γ

(
∞∑

i=1

tiai,n

)
+

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ

(
∞∑

i=1

tibi,n

)

=

∞∑
i=1

ti

(
∞∑

n=2

n[n− γ − γλ(n− 1)]Cn

1− γ
ai,n +

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ
bi,n

)

≤
∞∑

i=1

ti = 1,

and therefore
∞∑

i=1

tifi ∈ TH(F ; λ, γ). �

Now, we will examine the closure properties of the class TH(F ;λ, γ) under

the generalized Bernardi-Libera-Livingston integral operatorLc(f) which is defined

by

Lc(f) =
c + 1
zc

z∫
0

tc−1f(t)dt, c > −1.

Theorem 4.2. Let f(z) ∈ TH(F ;λ, γ). Then Lc(f(z)) ∈ TH(F ;λ, γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c + 1
zc

z∫
0

tc−1
[
h(t) + g(t)

]
dt.

=
c + 1
zc

 z∫
0

tc−1

(
t−

∞∑
n=2

antn

)
dt +

z∫
0

tc−1

( ∞∑
n=1

bntn

)
dt


= z −

∞∑
n=2

c + 1
c + n

anzn +
∞∑

n=1

c + 1
c + n

bnzn.

Using the inequality (2.4), we get

∞∑
n=1

(
n[n− γ − γλ(n− 1)]

1− γ
(
c + 1
c + n

|an|) +
n + γ − γλ(n− 1)

1− γ
(
c + 1
c + n

|bn|)
)

Cn

≤
∞∑

n=1

(
n[n− γ − γλ(n− 1)]

1− γ
|an|+

n + γ − γλ(n− 1)
1− γ

|bn|
)

Cn

≤ 2(1− γ), since f(z) ∈ TH(F ;λ, γ).

Hence by Theorem 2.2, Lc(f(z)) ∈ TH(F ;λ, γ). �

80



CERTAIN CLASS OF λ STARLIKE HARMONIC FUNCTIONS

Concluding remarks. For suitable choices of F (z), as we pointed out the

SH(F ;λ, γ) contains, various function class defined by linear operators such as the

Carlson-Shaffer operator, the Ruscheweyh derivative operator, the Sălăgean opera-

tor, the fractional derivative operator, and so on. When λ = 0 the various results

presented in this paper would provide interesting extensions and generalizations of

those considered earlier for simpler harmonic function classes(see [7, 8, 9]. The details

involved in the derivations of such specializations of the results presented in this paper

are fairly straight- forward, hence omitted.
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