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SIMPSON, NEWTON AND GAUSS TYPE INEQUALITIES

MIHALY BENCZE

Abstract. In this paper using the Simpson’s quadrature formula, the
Newton quadrature formula and the Gauss quadrature formula, we present

new inequalities between means.

1. Introduction

This papers deals with the comparison of means. If s and t are two real
parameters and a and b are positive numbers, then we may consider the following two
families of means:

- the Gini means,

(“?fé?)u e ifs £t
Gst(a,b) = “rr . :
exp (7“ oy logb) , ifs=t
- the Stolarski means,
as—bs 1/(S_t) .
(%) , if (s—t)st#0, a#b
exp (—1 4 2lEIpIEb) s =120, a £
_ s_ps 1/'5 .
Sst(a,b) = (mgaifblogb)) , ifs#0,t=0, a#b
Vab, ifs=t=0
a, if a =b.

Some particular cases are important in themselves.
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Gs,0(a,b) coincides with the Hélder mean of order s > 0,

1/s
s 4 ps 1/s b
As (a,b) = <a ; > = <bs ias / x251d;z:>

(A1 (a,b) is precisely the arithmetic mean of a and b, also denoted A (a,b)).

Go,o(a,b) coincides with the geometric mean,

) by ~1/2
G(a,b)\/cT(b_a/a x2dx> ;

S1,0(a,b) coincides with the logarithmic mean,

—1
b—a 1 b da
L(a,b) = - @
(a,) Inb—1Ina (b—a/a x)

while S7 1(a,b) coincides with the identric mean,

1
I AN I
I(a,b) = - (a“) = exp (ba/ lnxdx> .
a

We will be concerned with the problem of comparing the different means. Our

approach is based on certain inequalities satisfied by the 4-convex functions. Recall
that in the differentiable case these are precisely those 4-time differentiable functions

f such that f*)(z) > 0 for all .

Lemma 1.1. If f € C*([a,b]) and f*) >0, then the mean value of f,

i =y [ s
does not exceed any of the following three sums:
i) 5 [f (@) +4f (F2) + £ (B)] 5
ii) 5 [f(a) +3F (3572) +3f (“5%) + F (0)] ;
i) [ (25— B52vE) 4 £ (242 + 252 V3]

Proof. According to Simpson’s quadrature formula,

1

e [ rwa= @ (U5 v rw)] - Lo e,

for some & € (a,b), whence ). The cases i7) and i) are motivated by the Newton
quadrature formula,
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[f (a) +3f (2a3+b> +3f (a;%) +f<b)}

(b—a)*
648

|~

b
el RO

fD (&),

and respectively by the Gauss quadrature formula

bla/abf(l‘)dx:;[f(a;b_b;a\/g)‘*‘f(a;b‘f'b;a‘ﬁ)}

(b—a)
+Wf4 (&3),

where &3 and {3 are suitable points in (a, b). a

2. Applications

Theorem 2.1. If a,b > 0 then holds the following inequality

6a2b? (a + b)>

G* (a,b) > .
(a® 4+ b%) (a +b)” 4 16a2b?

or, in an equivalent form,
A (a®,b%) A? (a,b) + 2G* (a,b) > 3G? (a,b) A? (a,b).

Proof. In Lemma 1.1, we take f (z) = %, from which f® (z) = 120 > 0, therefore

x6

MR VIPLY N T
G?(a,b) b—a), 227 6 \a®  (at+b)? )

After calculus we obtain:

6a2b% (a + b)*
(a2 + b2) (a4 b)* + 16a2b?’

G? (a,b) >

that is,

A (az, b2) A? (a,b) + 2G* (a,b) > 3G? (a,b) A? (a,b).
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Theorem 2.2. If a,b,t > 0 then the following inequality holds
(b" — at) (ab (a + b))
10— a) ({40 (a7 209 ) )

G7 (a,b) >

or, in an equivalent form,

(bt —al) G**2(a,b)
t(b—a)  G2(ab)

Proof. In Lemma 1.1, we take f(z) = —&t, from which f@® (z) > 0 and so the

AT (a,b) .

A (a6 ) A (0 + b) + 2G* 12 (a,b) >

proof follows easily. |

Theorem 2.3. If a,b > 0 then the following inequality holds

4
ﬂnaﬁ)zab(“;b)

or, in an equivalent form,
I(a,b) > G'? (a,b) A*? (a,0).

Proof. In Lemma 1.1, we take f(z) = Inz for which f® (z) < 0, therefore
I(a,b) = exp (ﬁ fab lnxdm)

Zexp%(lna+4ln(a7%)+lnb)=m~ -

Exercise 2.1. Ifa,b > 0 then

Al(a,b) 2. Afa,b)
L@y = T3 G

Proof. From the definitions of identric and logarithmic mean, we have

a
lnI(a,b)— m—&-lnb—l
and
In/(a b)—L—&—lna—l
"7 L(a,b) '

After addition, we obtain:

a+b

— 41 —2=2Inl
T(ab) +1Inab nl (a,b)
or, equivalently,
Al(a,b)
1 —1=Inl . 2.1
L(a,b)+ nG (a,b) nl(a,b) (2.1)

68



SIMPSON, NEWTON AND GAUSS TYPE INEQUALITIES

Using the statement of the Theorem 2.3 we obtain:

Al(a,b)
L (a,b)

+1nG (a,b) — 1 > In (G2 (a,b) A* (a, 1)) .

Theorem 2.4. If a,b > 0 then the following inequality holds:

or, in an equivalent form,

S Ala,b) 2
~ G2(a,b)  Afa,b)’

3L (a,b)

Proof. In Lemma 1.1 we take f (z) = % for which f® (z) > 0, therefore
L P, s
L(a,b) b—a), 2 ~6\a a+b b

6ab (a +b)
(a + b)* + 8ab’

or, equivalently,

L(a,b) >

Theorem 2.5. If a,b>0 and t € (—o0, 3] U [1,2] U[2,+00), then

t(b—a) (221671 (a2~ +b2-1) 4 4 (a+ b)2t—1>

Ai (a,b) < 3. 92t (bt — at)

or, in an equivalent form,

Al (ap) < L0=9)

<3 (bt — at) (A (a2t717 b2t71) + 2A2t71 (CL, b)) .

Ift e (%, 1) U (%, 2), then the reverse inequality holds.
Proof. In Lemma 1.1 we take f (z) = 2%~ for which

FO (z) = (2t — 1) (2t — 2) (2t — 3) (2t — 4) 2®*°.
Ift € (—o0, 3] U[1, 3] U[2,400), then

2

f@(x) >0
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and
t b t(b—a) a+b\*!
t _ 2t—1 2t—1 2t—1
At(a,b)—bt_atlx dx<6(bf_at)<a +4(2> +b
and the proof continues in an easy manner. O

3. Newton Type Inequalities
Theorem 3.1. If a,b > 0 then the following inequality holds

8a2b% (2a 4 b)* (a + 2b)°

G2 (a,b) > 5 5
(a%2 4+ b2) (2a + b)” (a + 2b)” + 27a2b? (5a2 + 8ab + 5b?)

or, in an equivalent form,

16A (a®,b%) A (2a,b) A (a,2b) + 27G* (a,b) (5A (a®,b%) + 4G* (a,b))

> 64G? (a,b) A (2a,b) A (a,20).

Proof. In Lemma 1.1 we take f (z) = 2 for which f*) (z) > 0, therefore

b
/ _1(1 2 2w 1
G2 8 (2a +b)?  (a+20)° V)

w‘&

Theorem 3.2. If a,b,t > 0 then G? (a,b) is greater or equal to

8 (b" —a') (ab)'™ (2a + b)) (a + 2b) T
t(b—a)((at+! 4 b+1) (2a + b)) (a +20) 4 3642 (ab)' (20 + )T + (a + 2b)t+1) '

Proof. In Lemma 1.1 ii) we take f (z) = -4+ for which f® (z) >0 and so on. O

Theorem 3.3. If a,b > 0 then the following inequality holds

3 3
Is(a,b)>ab<2a;_b> (a—;%)

Proof. In Lemma 1.1 ii), we take f (z) = Inx for where f() (x) < 0, therefore
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1 b
I(a,b) =exp (b—a/ lna:dx>

> exp E lna—|—3ln2a+b+3lna+2b+lnb
8 3 3
2a+b\* fa+20\*\°
=|ab .
3 3

Exercise 3.1. Ifa,b> 0 then

A (a,b) 2\ % A% (2a,b) A% (a,2b)
T(ab) Zl—l—ln((S) oz @) )

Proof. Using (2.1) and the Theorem 3.3 we obtain

?EZZ; +1InG (a,b) —1>1n (ab (2&;1;)3 (aj;%)g);

and the proof follows easily. |

Theorem 3.4. If a,b > 0 then the following inequality holds:

4ab (2a + b) (a + 2b)
(a +b) (a? + 16ab + b2)’

L(a,b) =
Proof. In Lemma 1.1 ii) we take f (z) = 1 for which f® (z) > 0, therefore

L i1 9 9 1
L(a,b) b-a), = ~8\a 2a+b a+2b b

and so on. O

Theorem 3.5. If a,b>0 and t € (—o0, 3] U [1,2] U[2,+00), then

t(b—a) (321571 (a2t71 I b2t71) +3 (20 + b)zt—l +3(a+t 2b)2t—1>
8- 321 (ot — at) .

Ift e (%, 1) U (%, 2) , then the reverse inequality holds true.
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Proof. In Lemma 1.1 ii) we take f () = 2%~ for which ) () > 0, for t €
(=00, 2] U [1,3] U [2,400), therefore

b
Ai (a,b) = ﬁ/ z*

t(b—a) 961 20+ b\ a+20\*" 961
< 27 il
< S —eh <a +3( =5 +3( 55 +b

and the proof follows. O

4. Gauss Type Inequalities

Theorem 4.1. If a,b > 0 then

a® + 4ab + b2)2
2 (a? + ab+ b?)’

Proof. In Lemma 1.1 iii) we take f (z) = & for which f*) () > 0, therefore

(
G (a,b) < 5

1 1 b dx

G?(a,b) b-a

2
o T

21 1 N 1
2 (LH? _ (b—a)ﬁ)2 (a+b n (b—a)\/§>2
2 6

~12(a® +ab+b?)
(a2 +4ab+ b2

Theorem 4.2. If a,b,t > 0 then G7 (a,b) does not exceeds

2(b* — a') (a* + 4ab + bz)tJr1
th-a) ((B+v3)a+(3-v3)H)" +(3-v3)a+(3+v3)p)")

Proof. In Lemma 1.1 iii) we take f (z) = —A+ for which f® (z) > 0, therefore

b

1 B t / dx
G?(a,b) bt —at | attl

a

>t(b—a)6t+1< 1 . 1 )
T 200 =) \(B+vBla+ 3-vA)D) T (B-v3)at(B+va)D)

and the proof just follows. O
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Theorem 4.3. If a,b > 0 then

a? + 4dab + b2

I’ (a,b) <
(a,b) < 5

Proof. In Lemma 1.1 iii) we take f (z) = Inz for which ) (z) < 0, therefore

b
I (a,b) = exp (b ! / lnxdx>
—al,

<exp (; (111 <a42rb (bg)\/§> +In (a;bJr (bg)ﬁ)))
_Ja® +4ab + b2
A a—

O
Exercise 4.1. Ifa,b> 0 then
Ala,b) 1 1 242%(a,b)
<l4+-In{-+-——%].
L(ab ~ ™ (3 362 (a0)
Proof. Using (2.1) and Theorem 4.3 we obtain the desired result. O
Theorem 4.4. If a,b > 0 then
2 (a2 + 4ab + bZ)
L(a,b) <
(@0 < =Gy
Proof. In Lemma 1.1 iii) we take f (z) = L for which f® (z) > 0, therefore
b
1 1 [de
L(a,b) b—a)] =
S 1 1 n 1
T2\ atb _ (-a)V3  atb + (b—a)V3
2 6 2 6
B 3(a+0)
~ 2(a? +4ab +b?)’
O

Theorem 4.5. If a,b>0 and t € (—o0, 3] U [1,3] U[2,+00), then

2-6;*/91—?1)?)7@ (((3+\/§) a+(3-v3) b)zt+1 +((3-v3)a+ (3+v3) b>2t+1>

does not exceeds At (a,b).
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Ift e (%, 1) U (%, 2) , then the reverse inequality holds true.

Proof. In Lemma 1.1 iii) we take f(z) = 2%~! for which f® (z) > 0, if t €
(—oo, %] U [1, %] U [2,+00), therefore

t b
Ag(a,b):bt_at/ 21

t(b—a) ((3+\/§)a+

— 2(bt —at) 6

(3\/§)b>2t+1 ((3\/§)a+ (3+\/§)b>2t+1
* 6

|
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