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SOME APPLICATIONS OF SALAGEAN INTEGRAL OPERATOR

M. K. AOUF

Abstract. In this paper we introduce and study some new subclasses
of starlike, convex, close-to-convex and quasi-convex functions defined by
Salagean integral operator. Inclusion relations are established and integral

operator L.(f)(c € N ={1,2,...}) is also discussed for these subclasses.

1. Introduction

Let A denote the class of functions of the form:
o0
f(2) :z—|—Zakzk (1.1)
k=2

which are analytic in the unit disc U = {z : |z] < 1}. Also let S denote the subclass
of A consisting of univalent functions in U. A function f(z) € S is called starlike of

order 7,0 <~ < 1, if and only if

f (2)
Re{ 8 }>’y (z€U). (1.2)

We denote by S*(v) the class of all functions in S which are starlike of order v in U.

A function f(z) € S is called convex of order 7,0 <y < 1, in U if and only if

2" (2)

Re ¢ 14+ —; >v (z€U). 1.3

{ e } (=€) (13)

We denote by C(v) the class of all functions in S which are convex of order v in U.
It follows from (1.2) and (1.3) that:

f(z)eC(y) ifandonlyif  zf (2) € S*(7) . (1.4)
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The classes S*(y) and C(v) was introduced by Robertson [12].
Let f(z) € A, and g(z) € S*(7). Then f(z) € K(8,7) if and only if

NEAC B
R {g(z)}>ﬂ( el), (1.5)

where 0 < < 1 and 0 < < 1. Such functions are called close-to-convex functions
of order § and type . The class K(f,~) was introduced by Libera [4].

A function f(z) € A is called quasi-convex of order 8 and type ~ if there
exists a function g(z) € C(y) such that

Re {(Z;c,((j)))}>ﬂ (z€U), (1.6)

where 0 < < 1and 0 < v < 1. We denote this class by K*(3,v). The class K*(3,7)
was introduced by Noor [10].

It follows from (1.5) and (1.6) that:

f(z) € K*(3,7) ifandonlyif  zf (2) € K(3,7) . (1.7)

For a function f(z) € A, we define the integral operator I" f(z),n € Ny =
N U {0}, where N = {1,2,...}, by

I°f(z) = f(2) (1.8)
I'f(2) =If(z) = /f(t)fldt , (1.9)
0

and

" f(z) = (1" f(2) - (1.10)
It is easy to see that:
I"f(z):z—l—ZZ—:zk (n € Np) , (1.11)
k=2

and

A f(2) = I (2) (112)

The integral operator I" f(z) (f € A) was introduced by Salagean [13] and studied
by Aouf et al. [1]. We call the operator I™ by Salagean integral operator.
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Using the operator I"™, we now introduce the following classes:

Sp(y)={feA:I"feS(v)},
Co(v)={feA:I"feCH)},

Kn(B,7)={feA:I"f e K(B,7)} ,
and
K,(B,7)={feA: I"fe K*(8,7)} .

In this paper, we shall establish inclusion relation for these classes and integral
operator L.(f)(c € N) is also discussed for these classes. In [11], Noor introduced and
studied some classes defined by Ruscheweyh derivatives and in [6] Liu studied some

classes defined by the one-parameter family of integral operator I? f(z)(c > 0, f € A).

2. Inclusion relations

We shall need the following lemma.
Lemma 2.1. [8], [9] Let p(u,v) be a complex function, ¢ : D — C,D C C x C, and
let w = uy + iug, v = v + ivy. Suppose that o(u,v) satisfies the following conditions:
(i) ¢(u,v) is continuous in D;
(ii) (1,0) € D and Re {p(1,0)} > 0;
(iif) Re {¢(ius,v1)} <0 for all (iuz,v1) € D and such that v; < —1(1 4 u3).
Let h(z) = 14 ¢12 + ¢22% + ... be analytic in U, such that (h(z),zh (z)) € D for all
zeU. If Re{p(h(2),zh ()} > 0(z € U), then Re {h(z)} >0 for z € U.
Theorem 2.1. S)(v) C Sy 1 (v)(0 < v <1,n € Ny).
Proof. Let f(z) € Si(v) and set

2 f(2)
—_— = 1-—- 2.1
where h(z) =1+ hyz + he2? + ... Using the identity (1.12), we have

1"f(z)

T £(2) =7+ {1 =7)h(z). (22)
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Differentiating (2.2) with respect to z logarithmically, we obtain
2(I"f(2) A f(2) (1 —7)2h (2)

mf(z) Iz v+ (1= )h(z)

(1—7)zh'(2)
v+ @ =7)h(z)

= v+ =7)h(z)+

or

dIf(2) (1—7)2h'(2)
rre T ST G
Taking h(z) = u = uy + iug and zh'(2) = v = vy + vy, we define the function ¢ (u,v)

by:

’

(2.3)

(1=9)v

p(u,v) = (1—7)U+m :

(2.4)
Then it follows from (2.4) that
(i) ¢(u,v) is continuous in D = (C — {ﬁ}) x C}
(ii) (1,0) € D and Re{p(1,0)} =1 —~ > 0;
(iii) for all (iug,v1) € D such that v; < —1(1+u}),
: (1—7y)n }
R : — Red WU
etpliua,v)} ¢ {7 + (1 = 7)iug
el Chle) LN
T (-
A=) +ud)
T 2P+ (T =)

<0,

for 0 < < 1. Therefore, the function (u,v) satisfies the conditions in Lemma. It

follows from the fact that if Re {¢(h(z), zh' (2))} > 0,z € U, then Re {h(z)} > 0 for

z € U, that is, if f(z) € S;(y) then f(z) € S;; ,(v). This completes the proof of

Theorem 2.1. ]
We next prove:

Theorem 2.2. C,(y) C Crt1(7)(0 <7y < 1,n € Np).

Proof. f e Cn(ny) & I"f e ) & z(I"f) € S*(7) & I"(z2f) € 8*(7) & zf €

Si() = 2f € Spa(y) & I"THzf) € 5*(7) & (") € S (y) & I f €

C(v) & f€Cnii()

This completes the proof of Theorem 2.2. O
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Theorem 2.3. K,,(3,7) C Kn+1(8,7)(0<y<1,0< 8 < 1,n € Ny).

Proof. Let f(z) € K, (8,7v). Then there exists a function k(z) € S*(y) such that

Re {Z(I”f(Z))'

k(z)

Taking the function g(z) which satisfies I"g(z) = k(z), we have g(z) € Sk (v) and

}>5(ZGU).

A(I"f(z)
Re{ Tog(2) }>ﬂ (zeU) . (2.5)
Now put
GO (C) N,
i 8= Bhe) (2.6)

where h(z) =1+ c12 + c222 + .... Using (1.12) we have

2UMf(R)  If(2) I (2)

Tigls) ~ Ingle)  a(I"ig))
A (2)
S il 1) 2.7
A g(2) 20
InJrlg(Z)
Since g(2) € S3(v) and S3(7) C Sty (7), we let m — o+ (L= H),

where Re H(z) > 0(z € U). Thus (2.7) can be written as

, (1" (21 (2))
2(I"f(z) _ _ I"tg(z
Ing(z) v+ (1 —7)H(2)

/

Consider
(I (2)) = I g()[B+ (1~ Hh2)] - (29)
Differentiating both sides of (2.9), we have

W =(1=B)zh () + [B+ (1= B)A(2)] - [y + (1 = )H(2)]. (2.10)
Using (2.10) and (2.8), we have

2(I"f(2))
Img(z)

(1-8)zh'(2)
v+ (A =H(z)

— B =(1— B)h(z) + (2.11)
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Taking u = h(z) = uy + iug,v = zh'(2) = vy + vy in (2.11), we form the function

U (u,v) as follows:

U(u,v) = (1 - Bu+ (2.12)

v+ A =7H(z)
It is clear that the function ¥(u,v) defined in D = C' x C by (2.12) satisfies conditions

(i) and (ii) of Lemma easily. To verify condition (iii), we proceed as follows:

(1= Buly+ (1 —v)hi(z,y)]
[v 4+ (1 = y)hi(z, )2 + [(1 = y)he(z,y)]*

where H(z) = hi(z,y) + iha(z,y), hi(z,y) and ha(z,y) being the functions of x and

Re U(iug,vy) =

y and Re H(z) = hy(z,y) > 0. By putting vy < —1(1 + u3), we obtain

(1=3) 1 +ud)ly+ (1 —)hi(z,y)]
2{[y + (L =y)hi(z,y)]*> + [(1 = y)ha(z,y)]*}

Hence Reh(z) > 0(z € U) and f(2) € K,+1(8,7). The proof of Theorem 2.3 is

Re U (iug,v1) < — <0.

complete. O
Using the same method as in Theorem 2.3 with the fact that f(z) €
K*(8,7) & zf (2) € Kn(f,7), we can deduce from Theorem 2.3 the following:

Theorem 2.4. K (3,7) C K, 1(8,7)(0< 3,7 <1,n e Ny).

3. Integral operator

For ¢ > —1 and f(z) € A, we recall here the generalized Bernardi-Libera-
Livingston integral operator as:

z

L= / (U f (bt (3.1)

2C
0

The operator L.(f) when ¢ € N was studied by Bernardi [2]. For ¢ = 1, L1(f) was
investigated ealier by Libera [5] and Livingston [7].

The following theorems deal with the generalized Bernardi-Libera-Livingston
integral operator L.(f) defined by (3.1).
Theorem 3.1. Let ¢ > —v. If f(z) € Sk (v), then L.(f) € Sk (7).
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Proof. From (3.1), we have

2(I"Le(f) = (c+ DI f(2) — eI"Le(f) - (3.2)
Set ,
Z(I"Le(f)) 1+ (1= 2y)w(z)
I"L.(f) 1—w(z) ’
where w(z) is analytic or meromorphic in U, w(0) = 0. Using (3.2) and (3.3) we get
1" f(2) c+14(1—c—27)w(z)

(3.3)

FL() 0w &)
Differentiating (3.4) with respect to z logarithmically, we obtain
A 102l | ') G—emmale) o
I"f(2) 1—w(z) 1—w(z) 14+c+(1—c—2v)w(z)
Now we claim that |w(z)| < 1(z € U). Otherwise, there exists a point zy € U such
that |r|n<sz lw(z)| = |w(z)| = 1. Then by Jack’s lemma [3], we have zow (z9) =

kw(zo)(k > 1).

Putting 2z = 29 and w(zg) = €*? in (3.5), we have

Re {1+(1—2v)w(20)}:Re {(1_7)1“"(20)+7}:%

1 —w(zp) 1 —w(zo)

") | _ 2(1 — y)ke™?
fe { 177 (z0) V} =Re et o (o= )
B (e —1)[1+c+(1—c—2y)e ]
= 2k(1 —7)Re {2(1 —cosf)[(1 Jr c)24+2(1+c¢)(1—c—2y)cosf+ (1 —c—27)?]
_ —2k(1 —7)(c+7)
(14024214 ¢)(1 —c—2y)cosf + (1 — ¢ —27)2
which contradicts the hypothesis that f(z) € S} (7). Hence |w(z)| < 1 for z € U, and

and

<0,

it follows from (3.3) that Le(f) € S* (7). The proof of Theorem 3.1 is complete. O
Theorem 3.2. Let ¢ > —v. If f(2) € C,(7), then L.(f) € Cpn (7).

Proof. [ € Cu(y) & 2f € Si(v) = Le(2f) € Si(v) & z(Lef) € Si(y) &
Le(f) € Culy)- O
Theorem 3.3. Let ¢ > —v. If f(z) € K,.(8,7), then L.(f) € K,(8,7).
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Proof. Let f(z) € K,(8,7). Then, by definition, there exists a function g(z) €

S¥(7y) such that

2(I"f(2)
Re{ Tog(2) }>ﬂ(26U).
Put
AL

where h(z) =1+ c12 + c222 + ... From (3.2), we have
M) IR ()

Ing(z)  I"g(2)
Z(I”Lc(zf/))/ + cI"Lc(zf/)
Z(InLc g))/ + CInLc(g)

z(I”LC(zf/))/ cI”Lc(zfl)

_ I"Lc(g) I"L.(g)
(I"Lg)
Tie)
Since g(z) € Sy (7), then from Theorem 3.1, we have L.(g) € S} (7). Let
s =+ 1-HE),
where Re H(z) > 0(z € U). Using (3.7), we have
ALY | 1 g
1) R 7 O R
Ing(z) YH+e+ (1 —-7y)H(2) '

Also, (3.6) can be written as
d(I"Le(£)) = I"Le(@)[5 + (1= B)h(2)] -

Differentiating both sides of (3.9), we have

L)) = A L@ B+ (1 - B + (L= B)h ()" Lalg)

or

(L)'} s
I"Le(g)  I"Le(9)

=(1—B)zh (2) + [B+ (1 = B)h()] [y + (1 — 1) H ()] -
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From (3.8), we have

’

M) " (1—pB)zh (2)
e R S O
We form the function ¥ (u, v) by taking u = h(z) and v = zh'(2) in (3.10) as:
U(u,v) = (1 - B)u+ (1= B (3.11)

yHet(L-mH(z)
It is clear that the function ¥(u,v) defined by (3.11) satisfies the conditions (i), (ii)
and (iii) of Lemma 2.1. Thus we have I,,(f(z)) € K,(8,7). The proof of Theorem
3.3 is complete. O

Similarly, we can prove:
Theorem 3.4. Let ¢ > —v. If f(z) € K}(8,7), then I,(f(2)) € KX(8,7).
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