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BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS

PETRU BLAGA, TEODORA CATINAS, AND GHEORGHE COMAN

Abstract. The aim of the paper is to construct Bernstein-type operators
on tetrahedron with all straight edges and on tetrahedron with three curved
edges defined by some given functions. We study the interpolation prop-
erties, the approximation accuracy (degree of exactness, precision set) and
the remainder of the corresponding approximation formulas. The accuracy

is also illustrated by numerical examples.

1. Introduction

In some previous papers were constructed and applied some interpolation
operators on triangle with one curved edge respectively on tetrahedron with straight
edges ([1, 6, 7, 8, 9, 12]), as well as Bernstein-type operators on triangle with all
straight edges, respectively on triangle with one curved edge ([4, 5]). There were
studied the interpolation properties and the accuracy of these operators respectively
the remainders of the corresponding approximation formulas.

The order of an approximation operator P is given by the degree of exactness
(dex(P)) and by the precision set (pres(P)). Remind that dex (P) = r if Pf = f
for all f € P and there exists g € P, such that Pg # g, where P’ denotes the
space of polynomials in n variables of global degree at most r. The precision set of
an approximation operator is the set of all monomials for which the approximation is

exact [2].
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The goal of this paper is to study Bernstein-type operators on tetrahedrons

with straight edges respectively with three curved edges given by functions.

2. Bernstein-type operators on tetrahedrons with straight edges

By affine invariance it is sufficient to consider only the standard tetrahedron
75, with vertices Vo = (0,0,0), V4 = (h,0,0), Vo = (0,k,0) and V5 = (0,0, h), with
three edges 71, T2, 73 along the coordinate axes and with the edges I'1, I'», I's (opposite
to the vertex V). Also, one denotes by co12, 0013, 0o23 and o123 the tetrahedron faces
from the planes Vo V1 Vs, VoVi Vs, VoVaVs and V1V, Vs respectively (see the left side of
Figure 1).

(x,h—x,0) (h-y.y,0)

FiGURE 1. Tetrahedron with straight edges

Let II;, ¢ = 1, 2, 3, be the parallel planes to the tetrahedron faces that intersect
the tetrahedron edges in three points and T;, ¢ = 1,2, 3, be the triangles in which the
planes II;, i = 1,2,3, intersect the tetrahedron faces respectively (see the right side

of Figure 1).

2.1. Univariate operators. On each triangle one defines two Bernstein-type oper-

ators.
Remark 1. We shall study, in detail, only the Bernstein-type operators on the tri-
angle Ty. For the triangles Ts and T3 there are obtained analogous results.
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Let us consider the triangle T} (see Figure 2).

(0,h-z2,2)

(x,h—x-z,2)

Oy2)g - - - = c1o - - = = (h-y-z,y.2)

(0,0,2) (x,0,2) (h-2,0,2)

FIGURE 2. Triangle T}
For the uniform partitions

A;_{(ﬂ;ﬁ;ﬁwﬁ) L_ja}

m

A%:{(xjjwwz) ‘ij,n},
n

of the intervals [(0,y,2), (h —y — 2,9, 2)] [(z,0, 2), (x,h — x — z, 2)] respectively, one

and

considers the Bernstein-type operators BY and BJ* defined by

n h—y—=z
(BfnyF) (l’,y,Z) = me,l (x7yuz)F (z+uy72)
=0

with
m T 7 x m—i
mi (L, Y,2) = | . — 11— —
Pt (7,4 %) (Z)(h—y—Z> ( h—y—Z>
and
(BEF) (2,5, = > oy (22 2) F (:mh‘—‘ )
— ’ n
J:
with
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J n—j
n Y Y
n,j 3 ) = . 5T _ 1_7 3
1 (797) <J> <h_$_2> ( h—x—z)

where F' is a real-valued function defined on 7;,.
Theorem 2.1. If F': 7, — R then:
(i) BEYF = F on og23 U 0123,
BY*F = F on gp13 U 0123;
(ii) dex(BZY) =dex(BY*) =1;
(iii) pres(ByY) = {:viyjzk ‘ 1=0,1;4,k € N},
pres (BJ®) = {xiyjzk ‘ ji=0,1;i,k € N};

hea—1 — .
(v) (Bifes) (@.y.9) = o2 4 TEZEVZ 2o
m
h—x—y— .
weiok) (T,y,2) = + roy=2) #2F, i j keN.
B}, y y? b ~ j
Proof. The relations
1, fori=0,
Pm,i (07 Y, Z) =
0, fori>0;

1, fori=m,
Pm,i(h—y—2zy,2) =
0, fori<m,;

respectively
1, forj=0,
4n,j (‘Ta 0, Z) =
0, forj>0;
1, for j =n,
qnj (@, h—x—2,2)=
0, forj < mn;
imply that

(BoF)(0,y,2) = F(0,y,2),

(B;yF)(h_y_Zvyaz):F(h’_y_zvyaz)’
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and

(By°F) (2,0,y) = F (2,0, 2),

(BY*F)(z,h—x —z,2) = F(z,h—x —z,2),

i.e., the interpolation properties (i). Regarding the approximation accuracy, we have

(ByYeooo) (x,y, 2 E pmi (%,y,2) =1,

" /m T ‘ T me i(h—y—2)
B=Y — E 1— —_—
( meloo) (I,y,Z) - <Z>(h_ —Z) < h_y—z) m

Y
_:I:ml m—1 2 A . T m—l—i_w
N pard h—y—=z h—y—=z -
()
) <1_ v\ QM
h—y—=z m

(h y=2)_», alh-a—y—2)

(B»,mnyewk) (,T,y,Z):y‘]Z (Bfnyeioo) (xuyaz)u 1= 07 17 27 ju k S N7

3

respectively

(B%meooo T, Y,z ang x,Y,z) = 17

(BY%eo10) (2,9, 2) = v,

h— oy —
(BYeon) (e,,2) =y + LIV 22,

(B%Ieijk) (xu Y, Z) = 'zt (B%%OJ‘O) (‘Tv Y, 2)7 J=0,1,2, i,k eN,

that are proved in the same way, which imply (ii)-(iv). O
Let
F=B}JF+RJF

be the approximation formula generated by the operator B}Y.
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Theorem 2.2. If F (.,y,2z) € C[0,h —y — z] then

(B F) (,y,2)

h
< — WY, 2); < h,
\<1+26\/m>w(F(,y,Z),5), y+z<h

where w (F (s,y,2);0) is the modulus of continuity of the function F with regard to
the variable x.

Moreover, if 6 = 1/\/m then

r) ) < (145 ) (Pl o). ®)

Proof. We have

(R F) (@,9.2) € P (2,9, 2)
=0

h—vy—
F(xuyaz)_F<Z#7yuz>‘

m

<[+ 5(Lrmitrn (o =Y M i

< [HN“h‘x‘y‘z)]ww(.,y,z);a).

m

m
- 1 h—y—=z
<me,z(xuy72) (5 x_zé +1 W(F(-,y,Z),(S)
i=0

Since,
h2
max[z(h—x—y—z)}gz, z€[0,h], (4)

T

we have

|(R2VF) (2.y.2)

h
< (1+ m) W(F('vyaz)aa)
respectively (for 6 = 1/y/m)

(B3 F) (2,0, 2)| < (1+g)w(F(.,y,z);%>. 0
We also have
‘(R%’LIF) (:v,y,z)‘ < (1 + g) w (F (2,0,2) %) . (5)

Theorem 2.3. If F (.,y,2) € C?[0,h] then

zh—z—y—

(REVE) (2,9, 2) = — 2) P00 (e y 2.

2m
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for0<E<h—y—2zy,z€[0,h], and

h2
(RLVF) (‘Tuyaz)’ < =Moo F), (6)

8m
where
Miij = H%?'X‘F(i)j7k) ($7y7 Z)’
h

Proof. Since dex (BXY) = 1, by Peano’s kernel theorem, follows that

h—y—z
(Rfr’;uF) (LL', Y, Z) = / K200 (LL', Y,z 8) F(2)070) (87 Y, Z) dS,
0

where the kernel
h h—y—z
Kao0 (2,9, 23 8) = (x — 5) me Ty, % -
Jr

does not change the sign (Kao0 (2,9,2;5) <0, s € [0,h —y—z]). By mean value

theorem, one obtains

h—y—=z
(BVF) (0,5,2) = FO00) (€92) [ Koo (0.9,235)ds
0

h— g —y—
:_ﬂ;—mF(2)070) (gayvz)a Ogggh_y—z

Now, the inequality of (4) implies (6). O
Remark 2. On the same way it is proved the evaluations of the remainder in the

formula

F =BY"F + RV°F

i.e., for F(x,.,2) € C[0,h —x — 2]

(B2 F) (2,0, 2)| < (1 + g) w (F (@0, 2): %) (1)

respectively, for F (z,.,z) € C?[0,h]

2

h
(R F) (2,9, )] < oMo ®)

on Ty,
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2.2. Product operators. Let P, = BZYBY* and Q.,, = BY*B%Y be the products

of the operators BY and BY”.

We have
1 _h—y—z
(P :Ey, ZZszx?J, dn,j {1 Y, 2 | X
1=0 j=0
XF(ih—y—ZJ(m—z)(h—Z)Hy,Z),
m mn
respectively
1 h—z—z
(@) 0.2 = 305 o (257272 2 ) g (0, 2) ¢
1=0 j=0
mn n

Theorem 2.4. If F is a real-valued function defined on 7}, then
PLF=F (9)
and
L F=F (10)
on 73 U oq23.
Proof. Taking into account (1) and (2), one obtains
(PynF) (0,0,2) = F (0,0, 2),
(PonF) (h—y —2zy,2) = F (h—y - 2,y,2),
respectively
(QnmF) (0,0,2) = F(0,0,2),
(QumF) (h=y—zy,2) =F(h—y—2y,z),

for all y,z € [0, h). O

For the approximation error of the operators P}, and Q! ., we have the

nm?

following theorem.

10
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Theorem 2.5. If F (s,.,z) € C ([0, h] x [0, h]) then

1 11
‘(F—PmnF) (x,y,z)‘ <Q+hw (F(.,.,z), N \/ﬁ> (11)
and
‘(F—Q}LmF) (x,y,z)‘ <(1+hw <F (.’.’Z);Lm’in) (12)
on Ty,

Proof. We have

1 m n h—y—

i=0 j=0
X :zr—zh_y_z
m
h —z
+ = Zzpmz z, Y,z Qn,y(L,yaz)X
=0 j=0
m—1)(h—2)+1
Xy_j( ) ( ) +iy
mn
h -z
+Zzpmz 953/, Qn,j(Luyaz)}w(F('u'uz);51762)
1=0 j=0
1 Jz(h—z—y—2z 1 h—x—y—=z
< (a\/%+g\/%+1)W(F(-7-72)§51752)'
As,
2
x(h—x—y—z)gw on [0,h—y—2z],
2
y(h—x—y—z)gw on [0,h—2—2],

one obtains

1 h—y— z 1h r—z _
51 2\/_ 2 2\/_ 1) (F(.,.,Z),61,52)

1 h 1 h
<=L = 1) w(F (e 2):61,82).
(512m+522ﬁ+ >“’( (414,2)501,02)
Now, for §; = 1/y/m and §3 = 1/4/n, one obtains (11). The inequality (12) is proved

in the same way. O

(F = PLF) (24, 2)] < (

11
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2.3. Boolean sum operators. Let

Shn = Byl @ BY = BiY + By = BVBY (13)
and
T}, = BY" & BIY = BY + BIY — BB (14)

be the Boolean sums of the operators BjY and BY".

Theorem 2.6. If F' is a real-valued function defined on Ty, then
St F=F and T. F=F

on oo13 U gg23 U 0123

Proof. We have:
(BEVF) (0,5,2) = F(0,3,2),  (PhaF) (0,9,2) = (BYF) (0, 2)

which imply that

Sl F=F on ogs;

(BY"F) (2,0,2) = F (2,0,2), (PnnF) (2,0,2) = (BF) (2,0, z2)

which imply that

S,l,mF =F on opi3;
and

BYWF=F, BY*F=F, P, F=F on o3

which imply that

S,lrmF =F on oq23.
Analogously, it is proved that TﬁmF = F on 0g13 U 0g23 U 0123. ]
Theorem 2.7. If F € C(7,) then

|(F = SpnF) (2,9, 2)| < (1 - g) w <F(.,y,z);i) +

\/ﬁ

+ (H%%(F@,.,@;%) —l—(l—i—h)w(F(.,.,z);%,%)

on Ty,

12
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Proof. From the identity
F— Sy F=(F—BIYF)+ (F—BYF)— (F-P),,F)
one obtains
|(F = SpnF) (2,,2)| < [(RIYF) (2,9, 2)| + [(RY"F) (2,9, 2))|
+ ’(F— PﬁmF) (x,y,z)’

and from (3), (5), (11), the proof follows. O

Remark 3. The same inequality is obtained for the error (F—TﬁmF) (z,y, 2) using
instead of (11) the inequality (12).

3. Bernstein-type operators on tetrahedrons with three curved edges

One considers, also, the standard tetrahedron 7;, with vertices V5 = (0,0, 0),
Vi = (h,0,0), Vo = (0,h,0) and V3 = (0,0, k), with three straight edges 71, 72, 73
along the coordinate axes and with three curved edges 1, 72, 73 (opposite to the
vertex V), defined, respectively, by the one-to-one functions f; and g;, where g; is
the inverse of the function f;, i = 1,2,3. Also, one denotes by sp12, So13, So23 and the
tetrahedron faces from the planes VoViVa, VpVi Vs, Voo Vs and Vi VL Vs respectively,
by $123 the curved faced (opposite to the vertex V) (see the left side of Figure 3) and
by t;, i = 1,2, 3, the triangles with one curved edge in which the planes IT;, i = 1,2, 3,
intersect the faces of the tetrahedron 7y, respectively (see left side of Figure 3).

Next, one considers the particular case when the face s123 is on the sphere
22 +y?+ 22 = k2 ie, fi(u) = VA2 —u? and g; (v) = VA2 — 02, i = 1,2,3 (see right
side of Figure 3)

3.1. Univariate operators. One each triangle ¢;, ¢« = 1,2,3, one defines two
Bernstein-type operators.

We discuss here only on the triangle ¢; (Figure 4).

‘We have
m 2 — 2 — 22
(BrxnyF) (I,y,Z) = me,i (Iayvz)F(Z+7yaZ>
i=0

13
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(0,(h*-2)"22)

©y.(P-¥)")

v, (x.(hP=x3)12,0) ((h*-y*)2y.0)

FiGURE 3. Tetrahedron with three curved edges

(0,(hz*Z2)1/2,Z)

(x'(hZ_x2_22)1/2yz)

Oyz) $---—=--—=dc____ ((W*-y*-2)"y.2)

T

0,0,2) (x,0, 12

o

((h*-2%2,0,2)

FIGURE 4. Triangle t;

and
- " VhZ — 32— 22
(Bz F) (,T,y,Z) = an,j (.’L’,y,Z)F((E,]—,Z)
=0

with

| - m . i , z m—1
P (2,y,2) = { N N ’

14
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respectively

qnyj(x’%z)_ j h2 — 2 — 2 _m ,

where F' is a real-valued function defined on 7;,.
Following the way used in the Section 2 one can prove the corresponding
theorems:
Theorem 3.1. If F': T, — R then:
(i) BXYF =F on sga3 U s123,
BY*F =F on so13 U S123;
(i") dex(BfY) =dex(BY*) =1
(iii") pres(BZY) = {a'y/2" | i=0,1;j,k € N},
pres (BY*) = {xiyjzk ‘ i=0,1;i,k € N};

x(\/h2—y2—z2—x)] ik

(V) (Byleasn) (z,y,2) = |a* + -

y(VIE =22 —y)

n

(Bgmeﬁk) (xvya Z) = y2 +

]xizk, 1,7,k € N.
Let
F=BYF+ RYVF
be the approximation formula generated by the operator BXY.

Theorem 3.2. If F (.,y,z) € C [0, h? —y? — 22} then

(R2VF) (2.9.2)

h
g 1 o5 /— F " d ; 9 g h7
(14 g ) & (Pl 2)i0) e
respectively
‘(R%UF) (:v,y,z)‘ < (1 + g) w (F(.,y,z);

Theorem 3.3. If F (.,y,2) € C?[0,h] then

x(V@?:z?tzﬁ_x)

2m

)

FEOO (¢,y,2),

|(R2VF) (2.9,2)| = =

for0< &< /2 —y?2— 22, y,2€[0,h], and
2

h
}(R%JF) (z,y,2)| < %MmoF-

15
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Remark 4. Analogous results take place for the remainder in the approzimation

formula
F =BYF+ RY'F.

3.2. Product operators. Let P, = BLYBY* and Qpny = BY*BY be the products

of the operators BlY and BY", i.e.,

/h?_yQ_ZQ
(PmnF z, Y,z Zzpmz z, Y,z QHJ<—7yaZ>X

m
1=0 j=0

72 — 2 — 22 — ) (hZ — 22) + 242
F(i\/ 773 Z,j\/(m i) ( )+zy’2>’

mn
respectively
222
(Qan) (:E Yy,z)= Zzpm z(w j >Qn,j (xuyaz) X
=0 j=0
\/(nQ ) (2 =22 + j222 V/hZ — 22 — 22

X F|1i ,J 2 -

mn n

Theorem 3.4. If F': T;, — R then
PonF=F and QumnF =F on 73U si03.
Theorem 3.5. If F (.., z) € C ([0, h] x [0, h]), then
1 1
‘(F—PmnF)(x,y,z)‘<(1+h)w(F(.,.,z);— )
and
|(F = QumF) (z,y,2)| <(L+h)w [ F (.. z)L = :
r) )" 7\/E7\/ﬁ

3.3. Boolean sum operators. If S,,, = B:Y & BY* and T),,,, = BY* ® B}Y are the

Boolean sums of the operators B Y and BY*, then we have:

Theorem 3.6. If F': T;, — R then

SonF =F and T,nF=F on 5913USp23U S123.

16
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Theorem 3.7. If F € C(7},) then

and a similar inequality holds for the error F — T, F.
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