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THE GLOBAL BEHAVIOR OF THE DIFFERENCE EQUATION

F. BOZKURT, I. OZTURK, AND S. OZEN

Abstract. In this paper, we investigate the global stability and the peri-

odic nature of the positive solutions of the difference equation

yn+1 = α +
yn−1

yn
− yn

yn−1
, n = 0, 1, 2, ...,

where α > 0 and the initial conditions y0, y−1 are arbitrary positive real

numbers.

1. Introduction

Consider the difference equation

yn+1 = α+
yn−1

yn
− yn

yn−1
, n = 0, 1, 2, ... (1.1)

where α > 0 and the initial conditions y0, y−1 are arbitrary positive real numbers.We

investigate the asymptotic stability and the periodic character of the solutions of Eq.

(1.1).

We prove that the positive equilibrium point of Eq. (1.1) is local asymptotic

stable or a saddle point under specified conditions of the parameter and show that the

solution of the subtraction of two difference equations in [1] and [3], which solutions

are globally asymptotically stable, are also asymptotically stable.

The global asymptotic stability, the boundedness character and the periodic

nature of the positive solutions of the following difference equation

xn+1 = α+
xn−1

xn
, n = 0, 1, 2, ... (1.2)
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was investigated in [1], where α ∈ [0,∞) and the initial conditions x−1 and x0 are

arbitrary positive real numbers. H. M. El- Owaidy et al. [2] studied the global

stability and the periodic character of positive solutions of the difference equation

xn+1 = α+
xn−k

xn
, n = 0, 1, 2, ... (1.3)

where α ∈ [1,∞) , k ∈ {1, 2, ...} and the initial conditions x−k, ..., x0, x−1 are arbitrary

positive real numbers.

R. M. Abu-Saris and R. De Vault find conditions for the global asymptotic

stability of the unique positive equilibrium

ȳ = A+ 1

of the equation

xn+1 = A+
yn

yn−k
, n = 0, 1, 2, ... (1.4)

where A,y−k, ..., y0, y−1 ∈ (0,∞) and k ∈ {2, 3, ...} [3].

Here, we recall some definitions and results which will be useful in the sequel.

Let I ⊂ R and let f : I × I → I be a continuous function. Consider the

difference equation

yn+1 = f(yn, yn−1), n = 0, 1, 2, ... (1.5)

where the initial conditions y0, y−1 ∈ I. We say that ȳ is an equilibrium of Eq. (1.5)

if

yn+1 = f(ȳ, ȳ), n = 0, 1, 2, ... (1.6)

Let

s =
∂f

∂u
(ȳ, ȳ) and t =

∂f

∂v
(ȳ, ȳ)

denote the partial derivatives of f (u, v) evaluated at an equilibrium ȳ of Eq. (1.5).

Then the equation

xn+1 = sxn + txn−1

is called the linearized equation associated with Eq. (1.5) about the equilibrium point

ȳ [4].
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The sequence {yn} is said to be periodic with period p if

yn+p = yn

for n = 0, 1, ... [5].

Theorem 1.1. [4] (Linearized Stability)

xn+1 = sxn + txn−1 (1.7)

is the linearized equation associated with the difference equation

yn+1 = f(yn, yn−1), n = 0, 1, 2, ... (1.8)

about the equilibrium point ȳ. The characteristic equation associated with (1.7) is

λ2 − sλ− t = 0. (1.9)

(i) If both roots of the quadratic equation (1.9) lie in the unit disk |λ| < 1, then the

equilibrium ȳ of Eq. (1.8) is locally asymptotically stable.

(ii) If at least one of the roots of Eq. (1.9) has absolute value greater than

one, then the equilibrium of Eq. (1.8) is unstable.

(iii) A necessary and sufficient condition for both roots of Eq. (1.9) to lie in

the open unit disk |λ| < 1, is

|s| < 1− t < 2.

In this case the locally asymptotically stable equilibrium point ȳ is also called a sink.

(iv) A necessary and sufficient condition for both roots of Eq. (1.9) to have

absolute value greater than one is

|t| > 1 and |s| < |1− t| .

In this case ȳ is called a repeller.

(v) A necessary and sufficient condition for one root of Eq. (1.9) to have

absolute value greater than one and for the other to have absolute value less than one

is

s2 + 4t > 0 and |s| > |1− t| .

In this case the unstable equilibrium point is called a saddle point.
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Theorem 1.2 [6] Assume that p,q∈ R and k ∈ {0, 1, ...}. Then

|p|+ |q| < 1

is a sufficient condition for asymptotic stability of the difference equation

xn+1 − pxn + qxn−k = 0. (1.10)

Suppose in addition that one of the following two cases holds:

(i) k odd and q < 0

(ii) k even and pq < 0.

Then (1.10) is also a necessary condition for asymptotic stability of Eq.

(1.10).

Theorem 1.3. [7] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, 2, ... (1.12)

where k ∈ {1, 2, ...}. Let I=[a,b] be some interval of real numbers, and assume that

f:[a,b]x[a,b]→ [a, b] is a continuous function satisfying the following properties:

(i) f(u,v) is non-increasing in each arguments.

(ii) If (m,M)∈ [a, b]x[a, b] is a solution of the system

M = f(m,m),m = f(M,M) (1.13)

then m=M. From this, Eq. (1.12) has a unique positive equilibrium point and every

solution of Eq. (1.12) converges to ȳ.

2. Linearized stability and period two solutions

In this section, we consider Eq. (1.1) and show that unique positive equilib-

rium point ȳ =α of Eq. (1.1) is asymptotically stable with basin which depends on

certain conditions posed on the coefficient.

The linearized equation associated with Eq. (1.1) about the equilibrium ȳ is

xn+1 +
2
α
xn −

2
α
xn−1 = 0. (2.1)
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Its characteristic equation is

λ2 +
2
α
λ− 2

α
= 0. (2.2)

By Theorem 1.1. and Theorem 1.2. we have the following results.

Theorem 2.1. (i) The equilibrium point ȳ of Eq. (1.1) is locally asymptot-

ically stable iff α > 4.

(ii) The equilibrium point ȳ of Eq. (1.1) is unstable ( and in fact is a saddle

point ) if 0 < α < 4.

Proof. (i) The inequality (1.10) can be written as∣∣∣∣ 2
α

∣∣∣∣ +
∣∣∣∣−2
α

∣∣∣∣ < 1 . (2.3)

This inequality holds if α > 4. By using Theorem 1.2., we can also see that q=−2
α < 0.

These results give us necessary and sufficient conditions for the asymptotic stability

of Eq. (2.1) .

(ii) From Theorem 1.1./(v) we have,(
−2
α

)2

+ 4
(

2
α

)
> 0 and

∣∣∣∣−2
α

∣∣∣∣ > ∣∣∣∣1− 2
α

∣∣∣∣ .
Easy computations give (

−2
α

)2

+ 4
(

2
α

)
=

4
α2

+
8
α
> 0

and ∣∣∣∣−2
α

∣∣∣∣ > ∣∣∣∣1− 2
α

∣∣∣∣ .
Then we have the inequality

2 > |α− 2| .

This implies that by Theorem 1.1./(v), the equilibrium point is unstable (and is a

saddle point).

Theorem 2.2. Suppose that {yn}∞n=−1 6= 2 is a solution of Eq. (1.1). The

following statements are true.

(i) If 0 < α ≤ 4, then Eq. (1.1) has no real period two solutions. Suppose k

is odd.

(ii) If α > 4, then Eq. (1.1) has real period two solutions.
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Proof. Let

..., φ, ψ, φ, ψ, ...

be a period-2 solution of Eq. (1.1). Then,

φ = α+
φ

ψ
− ψ

φ
(2.4)

ψ = α+
ψ

φ
− φ

ψ
. (2.5)

Subtracting above two statements, we get

ψ =
2φ
φ− 2

. (2.6)

From (2.6), we have

φ2 − 2αφ+ 4α = 0. (2.7)

We consider (2.7) under two cases, where ∆ indicates the discriminant of (2.7).

(i) Let ∆ = 0. Under this condition we have α = 0 and α = 4.If Eq. (1.1)

has period 2 solutions then it must be ∆ 6= 0. This implies that if α ∈ (0, 4], then Eq.

(1.1) has no period 2 solutions.

(ii) Let ∆ > 0. In this case we have α > 4. While α > 4, Eq. (1.1) has

period 2 solutions. These solutions are

φ1 = α+
√
α (α− 4) and φ2 = α−

√
α (α− 4)

and they must be of the form

..., α−
√
α (α− 4), α+

√
α (α− 4), ...

Theorem 2.3. Suppose α > 4. Let be {yn}∞n=−1 6= 2 be a solution of Eq.

(1.1). If {yn}∞n=−1 6= 2 is periodic with period-2, then y0 is

y0 =
− (y−1 − α) y−1 ± y−1

√
(y−1 − α)2 + 4

2
. (2.8)

Proof. If the solution of Eq. (1.1) is periodic with period- 2, we can write

Eq.(1.1) as

y−1 = α+
y−1

y0
− y0
y−1

.
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Computations give

y2
0 + y−1y0 (y−1 − α)− y2

−1 = 0,

and we have ∆ = y2
−1

[
(y−1 − α)2 + 4

]
> 0. So, we obtain

y0 = −(y−1−α)y−1±y−1

√
(y−1−α)2+4

2 .

Theorem 2.4. Let {yn}∞n=−1 be a solution of Eq. (1.1). Then the following

statements are true.

1. Let α = 2
√
L− 1 and L > 1.

(i) If lim
n→∞

y2n = L, then lim
n→∞

y2n+1 = L√
L−1

.

(ii) If lim
n→∞

y2n+1 = L, then lim
n→∞

y2n = L√
L−1

.

2. Let α > 2
√
L− 1 and L > 1.

(i) If lim
n→∞

y2n = L, then lim
n→∞

y2n+1 =
L

[
α±
√

α2−4(L−1)
]

2(L−1) .

(ii) If lim
n→∞

y2n+1 = L, then lim
n→∞

y2n =
L

[
α±
√

α2−4(L−1)
]

2(L−1) .

Proof. 1. (i) Let lim
n→∞

y2n = L and lim
n→∞

y2n+1 = x. By Eq (1.1) we have

x = α+
x

L
− L

x

and so we get (
L− 1
L

)
x2 − αx+ L = 0. (2.9)

Since ∆ = α2 − 4 (L− 1), the discriminant is ∆ = 0. So, (2.9) has only one root,

and that is

x = lim
n→∞

y2n+1 =
L√
L− 1

.

(ii) The proof is similar and will be omitted.

2. (i) Let lim
n→∞

y2n = L and lim
n→∞

y2n+1 = x. While α > 2
√
L− 1, then from

(2.9) we have ∆ > 0. So,

x = lim
n→∞

y2n+1 =
L

[
α±

√
α2 − 4 (L− 1)

]
2 (L− 1)

.

(ii) The proof follows in the same way.
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3. Analysis of the semi-cycles of eq.(1.1)

In this section, we give some results about the semi-cycles of Eq. (1.1).

Let {yn}∞n=−1 be a positive solution of Eq. (1.1). A positive semi-cycle of

{yn}∞n=−1 consists of a “string” of terms {yp, yp+1, ..., ym}, all greater than or equal

to ȳ, with p≥ −1 and m≤ ∞ and such that either p=-1 or p > −1 and yp−1 < ȳ and

either m=∞ or m<∞ and ym+1<ȳ.

A negative semi-cycle of consists of {yn}∞n=−1 consists of a “string” of terms

{yq, yq+1, ..., yl}, all less than with and and such that either q=-1 or q>-1 and yq−1 ≥ ȳ

and either l=∞ or l<∞ and yl+1 ≥ ȳ.

A solution {yn}∞n=−1 of Eq. (1.1) is non-oscillatory if there exists N≥ −1

such that either

yn > ȳ for all n≥ N or

yn < ȳ for all n≥ N .

{yn}∞n=−1 is called oscillatory if it is not non-oscillatory.

Theorem 3.1. Let {yn}∞n=−1 be a positive solution of Eq. (1.1) which

consists of a single semi-cycle. Then {yn}∞n=−1converges monotonically to ȳ = α .

Proof. Suppose 0<yn−1 < α for all n≥ 0. Note that for all n≥ 0,

0 < α+
yn−1

yn
− yn

yn−1
< α

and so

0 < yn−1 < yn < α.

From this it is clear that the positive solutions converge monotonically to ȳ.

Theorem 3.2. Let be {yn}∞n=−1a positive solution of Eq. (1.1) which

consists at least two semi-cycles. Then {yn}∞n=−1is oscillatory.

Proof. We consider the following two cases.

Case I. Suppose that y−1 < α ≤ y0. Then

y1 = α+
y−1

y0
− y0
y−1

< α
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and

y2 = α+
y0
y1
− y1
y0

> α.

Case II. Suppose that y0 < α ≤ y−1. Then

y1 = α+
y−1

y0
− y0
y−1

> α

and

y2 = α+
y0
y1
− y1
y0

< α.

Hence the proof is complete.

4. Global asymptotically stability of eq. (1.1)

In this section, we find a global asymptotic stability result for Eq. (1.1).

Lemma 4.1. Let α ∈ (0,∞) and f(u, v) = α + v
u −

u
v . If u,v∈ (0,∞), then

f(u,v) is nonincreasing in each arguments.

Proof. The proof is simple and will be omitted.

Theorem 4.1. Let α > 4. Then the unique positive equilibrium ȳ of Eq.

(1.1) is globally asymptotically stable.

Proof. For u,v∈ (0,∞), set f(u, v) = α+ v
u−

u
v . Then f:IxI→ I is a continuous

function and is non-increasing in each arguments. Let (m,M)∈ IxI is a solution of

the system

M = f(m,m)

m = f(M,M),

then

M = α+
m

m
− m

m

and

m = α+
M

M
− M

M
.

Since M-m=0, we get m=M. By using Theorem 1.3, we have which shows

that is globally asymptotically stable equilibrium point of Eq. (1.1).

lim
n→∞

yn = ȳ
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which shows that ȳ = α is globally asymptotically stable equilibrium point of Eq.

(1.1).
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