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HEAT TRANSFER IN AXISYMMETRIC STAGNATION FLOW

ON A THIN CYLINDER

CORNELIA REVNIC, TEODOR GROŞAN, AND IOAN POP

Abstract. The steady axisymetric stagnation flow and heat transfer on

a thin infinite cylinder of radius a is studied in this paper. Both cases

of constant wall temperature and constant wall heat flux are considered.

Using similarity variables the governing partial differential equations are

transformed into ordinary differential equations. The resulting set of

two equations is solved numerically using Runge-Kutta method combined

with a shooting technique. For the special case of the Reynolds number

Re >> 1 (boundary layer approximation), we obtained an asymptotic solu-

tion which include the Hiemenz solution. The present results are compared

in some particular cases with existing results from the open literature and

with the asymptotic approximation, and we found a very good agreement.

It is shown that the Nusselt number and the skin friction increase and the

boundary layer thickness decreases with the increase of the Reynolds num-

ber. Some graphs for the velocity and temperature profiles are presented.

Also, tables with values related to the skin friction and Nusselt number

are given.

1. Introduction

The two-dimensional orthogonal stagnation-point flow of a viscous fluid im-

pinging on a flat wall is a very interesting problem in the history of fluid mechan-

ics. This flow appears in virtually all flow fields of engineering and scientific interest.

Hiemenz [1] was the first who derived an exact solution of the Navier-Stokes equations
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which describes the steady forced convection flow directed perpendicular (orthogonal)

to an infinite flat plate. Homann [2] studied the axisymmetric stagnation flow, also

against a plate, and Howarth [3] and Davey [4] extended the results to unsymmet-

ric cases. Later, Wang [5] presented an exact solution for the steady axisymmetric

stagnation-point flow on an infinite thin circular cylinder. Gorla [6] has then con-

sidered the steady boundary layer heat transfer in an axisymmetric stagnation-point

flow on an infinite thin circular cylinder. Both the cases of constant wall temperature

and constant wall heat flux at the surface of the cylinder were considered. Numer-

ical results for the velocity and temperature profiles as well as for the local Nusselt

number were obtained when the Reynolds number is relatively small. Further, Gorla

[7] has investigated the unsteady fluid dynamic characteristics of an axisymmetric

stagnation point flow on a circular cylinder performing an harmonic motion in its

own plane. Also, Gorla [8] has investigated the final approach to steady state in an

axisymmetric stagnation-point flow on a thin circular cylinder.

The aim of this paper is to extend the paper by Gorla [6] on heat transfer

in axisymmetric stagnation point flow on a thin infinite circular cylinder to the case

when the Reynolds number is large.

2. Basic equations

Consider the steady-state flow and heat transfer at an axisymmetric stagna-

tion point on a thin circular cylinder of radius a placed in a viscous and incompressible

fluid of ambient uniform temperature T∞, as shown in Fig. 1. The flow is axisym-

metric about z- axis and also symmetric to the z = 0 plane. It is assumed that both

the temperature of the surface of the cylinder Tw or the heat flux from the surface

of the cylinder qw are constants. Under these assumptions, the basic equations in

cylindrical co-ordinates (r, z) are:

Continuity
1

r

∂(ru)

∂r
+

∂w

∂z
= 0 (1)
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Navier Stokes

u
∂u

∂r
+ w

∂u

∂z
= −

1

ρ

∂p

∂r
+ υ

(

∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
−

u

r2

)

(2)

u
∂w

∂r
+ w

∂w

∂z
= −

1

ρ

∂p

∂z
+ ν

(

∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

)

(3)

Energy

u
∂T

∂r
+ w

∂T

∂z
= α

(

∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)

(4)

subject to the boundary conditions of these equations

r = a : u = w = 0 (5)

T = Tw(CWT) or
∂T

∂r
= −

qw

k
(CWHF)

r −→ ∞ : u = −A

(

r −
a2

r

)

, w = 2Az

T = T∞

Here u and v are the velocity components along r− and z− axes, T is the

fluid temperature, p is the pressure, ρ is the density, α is the thermal expansion

coefficient, ν is the kinematic viscosity and A is a given constant.

In order to solve Eqs. (1) - (4), we introduce the following similarity variables

u = −Aaη−1/2f(η), w = 2Af ’(η)z, η =
( r

a

)2

, (6)

θ(η) =
T − T∞

Tw − T∞

(CWT), θ(η) =
2(T − T

∞
)

(aqw/k)
(CWHF)
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Figure 1. The coordinate axis

Substituting (6) into Eqs. (2) and (4), we get the following ordinary differ-

ential equations

ηf ′′′ + f ′′ + Re(1 + ff ′′
− f ′2) = 0 (7)

(ηθ′)′ + PrRe f θ′ = 0 (8)

subject to the boundary conditions (5) which become

f(1) = 0, f ′(1) = 0, f ′(∞) = 1 (9)

θ(1) = 1, θ(∞) = 0 (CWT)

θ′(1) = −1, θ(∞) = 0 (CWHF)

where Re is the Reynolds number and Pr is the Prandtl number which are defined

Re =
Aa2

2ν
, Pr =

ν

α
(10)

The physical quantities of interest in this problem are the skin friction coef-

ficient Cf , the Nusselt numbers for the wall constant temperature case Nu and for

the constant wall heat flux case Nu∗. It is easily to show that these quantities can

be expressed as
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Re Cf = −f ′′(1), Nu = −2θ′(1) (CWT), Nu∗ =
2

θ(1)
(CHF) (11)

Case Re >> 1

We consider now the boundary layer approximation (Re >> 1 ) of the prob-

lem under consideration. In this respect, we introduce the following new variables:

ξ = Re1/2(η − 1), f(η) = Re−1/2 F (ξ), (12)

θ(η) = Θ(ξ) (CWT ), θ(η) = Re−1/2 Θ(ξ) (CHF)

Substituting (12) into Eqs. (7) and (8), we obtain:

(

1 + Re−1/2 ξ
)

F ′′′ + 1 + FF ′′
− F ′2 + Re−1/2 F ′′ = 0 (13)

(

1 + Re−1/2 ξ
)

Θ′′ + PrFΘ′ + Re−1/2 Θ′ = 0 (14)

along with the boundary conditions

F (0) = 0, F ′(0) = 0, F ′(∞) = 1 (15)

Θ(0) = 1, Θ(∞) = 0(CWT )

Θ′(0) = −1, Θ0(∞) = 0(CWHF )

We notice that for Re −→ ∞, that corresponds to the boundary layer approx-

imation, Eq. (13) - (15) reduce to the Hiemenz equations that describe the stagnation

point flow on a plate, see Hiemenz [1]. Equations (13) - (15) were solved analytically

using the following series expansions:

F = F0 + Re−1/2 F1 + Re−1 F2 + ... (16)

Θ = Θ0 + Re−1/2 Θ1 + Re−1 Θ2 + ...

Substituting (16) into (13) - (15), we get the following three sets of equations:
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first order approximation:

F ′′′

0
+ F0F

′′

0
− F ′2

0
+ 1 = 0 (17)

Θ′′

0
+ PrF0Θ

′

0
= 0

F0(0) = 0, F ′

0
(0) = 0, F ′

0
(∞) = 1

Θ0(0) = 1, Θ0(∞) = 0 (CWT)

Θ′

0
(0) = −1, Θ0(∞) = 0 (CWHF)

second order approximation:

F ′′′

1
+ F0F

′′

1
− 2F ′

0
F ′

1
+ F ′′

0
F1 + F ′′

0
+ ξF ′′′

0
= 0 (18)

Θ′′

1
+ Pr(F0Θ

′

1
+ F1Θ

′

0
) + Θ′

0
+ ξΘ′′

0
= 0

F1(0) = 0, F ′

1
(0) = 0, F ′

1
(∞) = 0

Θ1(0) = 0, Θ1(∞) = 0 (CWT)

Θ′

1
(0) = 0, Θ1(∞) = 0 (CWHF)

third order approximation:

F ′′′

2
+ F0F

′′

2
− 2F ′

0
F ′

2
+ F ′′

0
F2 + F ′′

1
+ F ′′

1
F1 − F ′2

1
+ ξF ′′′

1
= 0 (19)

Θ′′

2
+ Pr(F0Θ

′

2
+ F1Θ

′

1
+ F2Θ

′

0
) + Θ′

1
+ ξΘ′′

1
= 0

F2(0) = 0, F ′

2
(0) = 0, F ′

2
(∞) = 0

Θ2(0) = 0, Θ2(∞) = 0 (CWT)

Θ′

2
(0) = 0, Θ2(∞) = 0 (CWHF)

3. Results and discussions

Equations (7) - (8) subject to boundary conditions (9) were solved numerically

for different values of the Prandtl number (Pr = 0.01, 0.1, 1, 10, 100) and some

values of Reynolds number, Re = 0.01, 0.1, 0.2, 1, 10, 20, 50, 100 using Runge-

Kutta method combined with a shooting technique. Some values related to the Nusselt

numbers and skin friction are given in Table 1 for Pr = 7. Results reported by Wang
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[5] are also included in this table. It is seen that there is a very good agreement

between the present results and those reported by Wang [5]. We are, therefore,

confident that our results are very accurate. The validity of the results are also

illustrated in Figs. 2 to 4.

Figures 5 to 9 show the dimensionless velocity and temperature profiles for

different values of the Reynolds and Prandtl numbers. Thus, it is seen that for a fixed

value of the Parndtl number, the velocity profiles increase with the increase of the

Reynolds number. However, the temperature profiles decrease with increase of the

Reynolds number in the both cases of constant wall temperature and constant heat

flux from the plate, respectively, see Figs. 5 to 7. Further, Figs. 8 and 9 show that

for the both cases of constant wall temperature and constant heat flux from the plate,

temperature profiles decreases with the Parndtl number when the Reynolds number

is fixed. As expected the thickness of the temperature boundary layer decreases when

the Parndtl number increases.

Finally, Figs. 10 and 11 show the variation of the Nusselt number with the

Parndtl number in both cases of constant wall temperature and constant heat flux

from the surface for a fixed value of the Reynolds number. The increase of the Nusselt

number with the Reynolds number is in agreement with the results given in Table 1.
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η∞ Re f”(1) θ′(1) θ(1)

320 0.01 0.313605 -0.320451 3.120599

80 0.1 0.615487 -0.615504 1.624684

35 0.2 0.786053 - 0.780247 1.281645

0.78605*

11 1 1.484185 - 1.450720 0.689313

1.484185*

3.5 10 4.162922 - 4.013979 0.249129

4.16292*

2 20 5.779734 - 5.560052 0.179855

1.75 50 8.985168 - 8.624974 0.115942

1.5 100 12.596429 -12.077699 0.082797

Wang[5]

Table 1. Values of the skin friction, f ′′(1), Nusselt numbers, (θ′(1) for constant

temperature case and θ(1) for the constant wall heat flux case), and boundary layer

thickness, η∞, for Prandtl number, Pr = 7 and different values of the Reynolds

number, Re.
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Figure 2. Validity range of the asymptotic approximation for ve-

locity in the case Re >> 1.
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−0.5 0 0.5 1 1.5 2
0

5

10

15

20

25

30

35

Re

Re = 0.01

Re−1/2Θ(0)

θ(1)

Figure 4. Validity range of the asymptotic approximation for tem-
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0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

f’(
η

)

Re = 0.2, 1, 10, 100
Pr = 7

Figure 5. Dimensionless velocity profiles for Pr = 7 and Re = 0.2, 1, 10, 100.
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Figure 6. Dimensionless temperature profiles for Pr = 7 and

Re = 0.2, 1, 10, 100 in the constant wall temperature case.
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Figure 7. Dimensionless temperature profiles for Pr = 7 and

Re = 0.2, 1, 10, 100 in the constant wall heat flux case.
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Figure 8. Dimensionless temperature profiles for Pr = 0.01, 0.1, 1,

10, 100 and Re = 10 for the constant wall temperature case.
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Figure 9. Dimensionless temperature profiles for Pr = 0.01, 0.1, 1,

10, 100 and Re = 10 for the constant wall heat flux case.
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Figure 10. Variation of the Nusselt number with Prandtl number

for Re = 0.1, 1, 10, 100 in the case of constant wall temperature.
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Figure 11. Variation of Nusselt number with Prandtl number for

Re = 0.1, 1, 10, 100 in the constant wall heat flux case.
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die Kugel, Z. Angew. Math. Mech. (ZAMM), 16(1936), 153-164.

[3] Howarth, L., The boundary layer in three-dimensional flow. Part II: The flow near a

stagnation point, Phil. Mag. 42(1951), 1433-1440.

[4] Davey, A., Boundary-layer flow at a saddle point of attachment, J. Fluid Mech.,

10(1961), 593-610.

[5] Wang, C.-Y., Axisymmetric flow on a cylinder, Quarterly of Applied Mathematics,

32(1974), 207-213.

[6] Gorla, R.S.R., Heat transfer in an axisymmetric stagnation flow on a cylinder, Appl.

Sci. Res., 32(1976), 541-553.

[7] Gorla, R.S.R., Unsteady viscous flow in the vicinity of an axisymmetric stagnation point

on a circular cylinder, Int. J. Engng. Sci. 17(1979), 87-93.

[8] Gorla, R.S.R., The final approach to steady state in an axisymmetric stagnation flow

following a change in free stream velocity, Appl. Sci. Res., 40(1983), 247-251.

”Tiberiu Popoviciu” Institute of Numerical Analysis,

P.O. Box.68-1, Cluj-Napoca, Romania

E-mail address: neli@math.ubbcluj.ro

Faculty of Mathematics and Computer Science,
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”Babeş-Bolyai” University,

Cluj-Napoca, Romania

E-mail address: pop.ioan@yahoo.co.uk

132


