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POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS
WITH GENERALIZED LAGUERRE WEIGHTS

G. MASTROIANNI AND J. SZABADOS

Dedicated to Professor D. D. Stancu on his 80" birthday

Abstract. We present a complete collection of results dealing with the

polynomial approximation of functions on (0, 4+00).

1. Introduction

This paper is dedicated to the approximation of functions which are defined
on (0,4+00), have singularities in the origin and increase exponentially for x — +o0.

Therefore, it is natural to consider weighted approximation with the generalized La-

G

guerre weight w,(z) = z% We first prove the main polynomial inequalities:
“infinite-finite” range inequalities, Remez-type inequalities, Markov-Bernstein and
Nikolski inequalities. In Section 2 we introduce a new modulus of continuity, the
equivalent K —functional and some function spaces. With these tools we prove the
Jackson theorem, the Stechkin inequality and estimate the derivatives of the polyno-
mial of best approximation (or “near best approximant” polynomial). We will also
prove an embedding theorem between functional spaces. In Section 5, generalizing
analogous results proved in [10], we will study the behaviour of Fourier sums and La-

grange polynomials. This paper can be considered as a survey on the topic. However,

all the results are new and cover the ones available in the literature.
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G. MASTROIANNI AND J. SZABADOS
2. Polynomial inequalities

In this context the main idea is to prove polynomial inequalities with expo-
nential weights on unbounded intervals by using well known polynomial inequalities
(eventually with weight) on bounded intervals. To this end the main gradients are
the “infinite-finite range inequality” and the approximation of weight by polynomials
on a finite interval.

In our case, the weight wq(r) = wag(r) = zoe~’

is related, by a quadratic trans-
formation, to the generalized Freud weight u(x) = |;1c|20‘+1e_”2ﬁ.
The Mhaskar-Rakhmanov-Saff number @,, (u), related to the weight w, is [9]: @ (u) ~

“

mY/26 where the constant in “~” depends on « and 3 and does not depend on m.

Then for the weight w, we have
(W) = diggm (1)? ~ m'/? (2.1)

and, for an arbitrary polynomial P,,, the following inequalities easily follow:

(/Om IPm(x)waﬁ(x)Pdg;y/p <C (/ Pm(x)waﬁ(x”pdx)l/p’ (2.9)

m

( /:OO Pmu)waﬁ(xﬂpdz)l/pzcwm ( /0+°°|Pm<x>wag<x>|pdx)l/p (23)

m (146)
where T, = [0, an (1 — k/m?/®)] (k =const), p € (0,+00], B> L, a > —% if p < 400
and a > 0 if p = 400; the constants A and C' are independent of m and p and A
depend on § > 0. Then, as a consequence of some results in [5], [11], with = € [0, Aa,,],
A > 1 fixed, there exist polynomials @,, such that Q,(z) ~ e and

Vim Q@) < Ce (2.4)

m

»

where C' and the constants in “~” are independent of x. Therefore, by using (2.2)
and (2.4) and a linear transformation in [0, 1), polynomial inequalities of Bernstein-
type, Remez and Shur can be deduced by analogous inequalities in [0, 1] with Jacobi
weights x®.

The next theorems can be proved by using the previous considerations.
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POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS
With A >00<t; <...<t, <ap fixed, we put

o= (- ) (O -0

i=1

where m is sufficiently large (m > myg), r > 0. Let us specify that if » = 0 then
A = (438,00 (1= 42)]
Theorem 2.1. Let A,tq,...,t. be as in the previous definition and 0 < p < +o00.

Then, for each polynomial P,,, there exists a constant C = C(A), independent of m,

p and P,,, such that

( /O - (meaﬂ)(:zj”pdx) e ( / (meaﬂ)(x”pdx) T s

Theorem 2.2. For each polynomial P, and 0 < p < +00 we have

1/p 1/p

([ iranmusora) <o ([ imemare) e

am

and

([ remnere) <o () ([ iraemaere) o)

with C' # C(m,p, Pp).

As in the Markoff-Bernstein inequalities, we have two versions of Nikolski

inequality.

Theorem 2.3. Let P,, € IP,, be an arbitrary polynomial and 1 < ¢ < p < 4o00.
Then there exists a constant K, independent of m,p,q and P,, such that, for o« > 0
if p=+4o0 and a > —% if p < 400, we have

1_ 1
l m q P
|Prwapot lp < K ( ) | Ptwas]la (2.8)

2_2
m q P
| Prvaslly < K ( ) 1 Prutwas]la (2.9)

where p(x) = /x.
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Proof. We first suppose o > 0 and prove (2.8) with p = 400 and 1 < g < +0o0.
Set I, =[x,z + A (x)], where > 0, A, (x) = @\/5

From the relation
/ P, (t)dt = Py (2)A, () +/ P (1) (z+ Ay (z) —t) dt,

(by using Hélder inequality for ¢ > 1) we get for ¢ > 1:

|Ram¢mﬁ|s(vgm)UqK[JRAﬂwﬁ)U{+ff”([Jauwwﬂvﬁ)uj.

(2.10)

Since wag(x) ~ wap(t) for t € I, a > 0 it also holds

a7n

+ W%(Ayawﬂmmeﬁfﬂ~

Pa(@uas()e(@)] < c(m fMKijmmwaﬁfm@1n

m
By extending the integrals to (0,400) and by using Bernstein inequality we deduce:

m 1/4q
_<K (a> 1 Pmwagll, - (2.12)

m

[t

Moreover, using (2.5) with » = 0 and A = 1, one has

T
< (i) ],
Then from (2.12) it follows
o \ 2/
Pl < K (=) 1Pl (213)
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POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS

Then (2.8) and (2.9) are true with o > 0, p = 400, 1 < ¢ < +00.
When a > 0 and 1 < g < p < 400, then to prove (2.9), we write

|Powaslll = [||Pmtwasl”™ | Prewasl?||
+o0
SHWMK% Prwapl® (@)da <
m \ P07 B
SKT%WM) Pt~ | Prtvas |

from which
m \2373)
Pl < & (=) 7 1Pl

i.e. (2.9) with @ > 0. In an analogous way we can prove(2.8).

Let us suppose now 1 < ¢ < p < 400 and —% < a < 0. From Theorem 2.1 we get

||mea6|‘p ~ ||meaﬁ||Lp(j7:g )

Gm

In the interval [mz,am] we can construct a polynomial @, (with [ a fixed integer)

for which it holds Qy, ~ z* (see [8] in [—1,1]) and

[ Bmwopll,, ~ || (P Qum)wos|| Lo ) < Cll(PnQun)wosll,, -

=% an
Then we can use (2.9) with a = 0, P,,,Qy,, instead of P, and, finally, Theorem 2.1 to
replace @y, by z¢.

Relation (2.8) can be proved in a similar way and the proof is complete. O

3. Function spaces, modulus of continuity and K-functionals

With wap(z) = 2" and 1 < p < 400 we denote by L, , the set of all

measurable functions such that

—+o0
1
| fwaslly = / | fwagl? (z)de < +00, «a > s
0

If p = 400 we define

LY ={feC(0,+0)]: lim (fwas)(z) =0}, a>0

s z—0,2—+00
and
Ly = {f € C°[[0,400)] : wli)rfw(fwaﬁ)(x) =0},
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where CY(A) is the set of all continuous functions in A C [0, +00).

For more regular functions we introduce the Sobolev-type space
WP =W (wap) = {f € L%, : 7D € AC((0,+00)) and || /)¢ wagll, < +o0}

where r > 1, 1 < p < 400, p(z) = v/ and AC(A) is the set of absolutely continuous
functions in A C [0, +00).

In order to define in L%, 5 2 modulus of smoothness, for every h > 0 we introduce the
quantity h* = ——, 8 > 1 and the segment I,;, = [8r2h% ARh*] where A is a fixed

h2B-1 ’
positive constant.

Then, following [3] (see also [1]), we define
QL(f Dwapp = sup [[(AhpfwapllLe,m) (3.1)

0<h<t
as the main part of the modulus of continuity, where r > 1, 1 < p < 400, A}“Wf(x) =

Z(—l)k ]: f(z+(r—k)hy/z). The complete modulus of continuity w, is defined

by
W;(fv t)waﬁ’p = inf H(f - P)waﬁ||LP([0,8r2t2]) + Q:,(f, t)wa;s,p + (3-2)
Pe]Prfl
+ inf ||(f = P)wagllLe(ate,00)-
pPel,._,

Connected with the modulus of continuity wg, is the K-functional

KU Vospn = 0 1 = 9l + €190} (33)

where r > 1and 1 <p<+4o00,0<t<1.

In some contexts it is useful to define the main part of the previous K- functional

K(fit ) wusp = sup  inf {[(f = 9)wapllLe,) + 11197 wasll o} (3:4)
0<h<t geEWr

In fact the following theorem holds

Theorem 3.1. Let f € L’U’)aﬁ and 1 < p < +4o0o0. Then, ast — 0, we have

w;(fa t)waﬁul’ ~ K(f’ tr)waﬁvp (3'5)
and

Q;(f, t)wag,p ~ K(ﬁ tr)waﬁ’p (3~6)
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I3

where the constants in “~7 are independent of f and t.

The proof of this theorem is similar to the proof in [1] and later we will prove
some crucial steps.

Tt is useful to observe that, by (3.6) and (3.4) with g = f, it follows

Q:o(.ﬂ t)waﬁ,P <C Oirilzfgt hrHf(r)(prwaﬁHLp(Im);

this last relation allows us to evaluate the main part of the modulus of continu-
ity of differentiable functions in (0,+00). For example, for f(z) = |logz| we have
U ~ 12420,

Now, as in the case of periodic functions or of functions defined on finite intervals,
we can define the Besov-type spaces ng(waﬁ) by means of modulus of continuity. To

this end, with 1 < p < 400, we introduce the seminorms

1/q
Uk [ wk(f,8) a
%] Y Wa 3P
k

1fllp.g.s = 7.0) (3.7)
w
sup —~ el waﬁ’p, q =+, k>s
>0 [2d
and define
B, = By(wap) ={f € Li,, : |fllp.q.s <+oo}
equipped with the norm [|f| gz, (w.s) = [[fwasllp + [|fllp.qs- Here we cannot study

these spaces in details. In the next section we will prove some embedding theorems

and will characterize the Besov spaces by the error of the best approximation.

4. Polynomial approximation

For each function f € LE, with 1 <p < +o0, 8> %, a > — if p < 400

’aﬁ
and a > 0 if p = +00, we define, as usual,the error of best approximation

EM(f)wuﬁJl = inf (f- P)waﬁ”P'
Pe]Pnl—l

In this section we will estimate E,,(f)w,,,» Dy means of the modulus of continuity
and will characterize the classes functions defined in the previous section.
In order to establish a Jakson theorem it is necessary the following

111



G. MASTROIANNI AND J. SZABADOS
Proposition 4.1. For each function f € Wi (wag), 1 < p < +00, we have
F
En(Hwasp < CF—If"owapllp, (4.1)
where o(x) = /x, C # C(m, f) and a,, ~ ml/ﬁ.

Proof. We first prove that the condition

( /O o | f’(:r)e_g”ﬁ|pdx)l/p < 400 (4.2)

implies the estimate

+oo
() p < OV ( /

m

1
atz

o o+ 22)"

) w3

, 9(x) = f(2?), z € R and pay,
the best approximation of g. By using Theorem 2.1 in [9] we have

4 = ( / () - pzmm))u(x)wx)l/p <

—00

a2m
< C—
- 2m <

1

where g, = g, (u) ~ m?2?8 is the M-R-S number related to the weight v and as we
first observed Ggm ~ \/@m(weg). Then a change of variables in A and B leads to
(4.3).

Now we suppose f € W} (wag) and we introduce the function

To this end, let 1 < p < 400, u(z) = |z[22+1/rea™

1 P
Gom \ 2015 28
Ix\ + 5 e

2m

fm(x) =

Obviously the condition ||f,’ne_””ﬁ |lp < +o0 is satisfied, (4.3) can be used and we easily

deduce
Vam
En(fm)wasp < C_ = pwapll ([ ony oc))- (4.4)

Then, since Ey,(f)wos.p < 1(f = fr)Wasllp + Em(fim)was,p, We have to estimate only
the Lﬂaﬁ—norm of f— fin.

QAm

To this end, we put zg = e

and get

1/p

1 = sl = ([ 11760 = Flenuwns(opc )
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POLYNOMIAL APPROXIMATION ON THE REAL SEMIAXIS

_ (/Om /OIO(t )0 f (B wap(2)dt pdx>1/p
< [Tl ([T e-oe,e) "

- [Mwror( [ t uty (o)) "

Zo 1/q a
< Cllf'owasllLr(.00) ( / t“””””dt) ~ | w0, 2 )

which, with (4.4), proves (4.1) when 1 < p < 4+00. The case p = 400 is similar and

xo 1
dt ~ / 1@t re " dt <
0

(4.1) is proved.
By iterating (4.1) we have, for each g € WP (wag), the estimate

am " ), T
En@nas < € (L22) 1o waall, € # Clm ),

from which, by using the K-functional and its equivalence with w,, the Jackson

theorem follows. O

Theorem 4.2. For all f € Lﬁaw 1 <p< 400 and r < m we have

Enfuy <0 (FL2) 02 C(fim) (4.)
Was,P

By using the K-functional and the Bernstein inequality, in a usual way we

obtain the Stechkin inequality formulated in the following theorem

Theorem 4.3. For each f € Lﬁjw, 1 < p < 400, and an arbitrary integer r > 1 we

N Var\" S (L8 BilDues
w(0)., 200 B 0e) T o

have:

with C = C(r) independent of m and f.
By proceeding as in [1], Lemma 3.5 (see also [3], p. 94-95) it is not difficult
to show that, setting

B Py = 0 1 = Pl oy o) 1S5S 50,
if t71Q0(f, )wapp € L', it results

Bon(fuup < OO (f, \/T:m) . (47)

Wap,P
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From this last result the next theorem easily follows.

Theorem 4.4. For each function f € LP 1 < p < 400, we have

Wag?

Vam

m QF 7 t)w

Em(f)wasp < C/ Mdt (4.8)
0

where C # C(m, f) and k < m.

Recall that the main part of the modulus fo, is smaller than w:f; and generally

the two moduli are not equivalent. Moreover if, for some p, QF(f, t)w.sp ~ 17,

A
0 < A <k, then by (4.8), we have Ep(f)was.p ~ (—%’“) and, by using (4.6), also
wf,( f ) wasp ~ t*. Then for these classes of functions the two moduli are equivalent.
By using Jackson and Stechkin inequalities we can represent the seminorms of the
Besov spaces in (3.7) by means of the error of best approximation (see, for instance,

. In fact, for 1 < p < +o0, the following equivalences hold:
[3]). In f for1<p he following equival hold
+o0 1/q
1 lpgs ~ (Zk“zﬁ)sqlEk(f)zm,,,) , 1<q< oo
k=1

_ 1)
”f”pqs ~ Sup m(l QB)SEm(f)wag,pv q = +oo.
m>1
The next theorem is useful in more contexts.

Theorem 4.5. For each f € LP |1 <p <400, we have

Wag?
r a . a " T
() it {10 = Pheasll + (Y22 1P sl b (49)
wag,p PEP. m

[

where the constants in “~7 are independent of m and f.

A consequence of formula (4.9) is the useful inequality

(\/@)T ”Pé:)gﬁwaﬁHp < Cw:; <f7 T)ww’p, (4.10)

m

being P,, the polynomial of quasi best approximation, i.e.

1(f = P) waﬁ”p < CEn(f)wap.p-

For the proof of Theorem 4.5 the reader can use the same tool in [1] with some small
changes.

Now we will show some embedding theorems which connect different function norms
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and moduli of smoothness. For different classes of functions the reader can consult
(2].
In the sequel, to simplify the notations, we will set w = wqg with a > 0.

Theorem 4.6. Let f € LP, 1 <p < 400 and let us assume that the condition

PO (f Hw
@\J > P

is satisfied. Then [ is a continuous function in any interval [a,+0), a > 0.

Moreover, if, with w = w/@'/?, and

LU (f e
%] ? w,p
then we have
En (w00 LE O (f )
- < C/ R gy (4.13)
op (1) J=Ch T
and
~ ! Q7 (fv t)ﬂ),
ol < € (Wl + [ 2250 2ar) (1.14)

Finally (4.12) implies (4.13) and (4.14) with w in place of W and ]2; in place of %.

Here the positive constants C' are independent of m, t and f.

Proof. In virtue of (4.8), (4.11) implies, for 1 < p < 400, lim, Ep,(f)w,p = 0. There-
fore, if P,, denotes the polynomial of best approximation (or quasi best approxima-
tion) in L2, the equality

—+oo

w(f = Pm) =Y (Porsiyy — Paryy) w (4.15)
k=0

is true a.e. in (0,400). If we prove that the series uniformly converges on each
half-line [a,400), a > 0, then the equality holds everywhere in [a,+00) and f is
continuous.

Now, by using (2.8), with p = +00 and g = p, one has

1
(Pokt1y, — Pokp,) wo?

1
Port1, — Por ) W] oo (1g 100y < @ 27
(P 2m) Wl oe (o, +00) L ((a,+50))

) ok+1 1/p
<a 2K () | (Pakt1,m — Porpn) wllp
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o 2k+1m 1/p
S a KC <W> H(‘P2k+1m P2k )w”Lp(Imk)

having used (2.5) in the last inequality and setting I, = [@,fiiﬁm)z, Qok+1,y, |- Conse-

quently one has, for (4.7),

2km Vp
[Pt — Po) oo sy < C( ) By (P

k p .
c o(zm) (9
ok 28m, wp
and
+o0 1/11
\/a‘2km>
Por m_Pkm W 1,00 (1a. 400 >~ C fa
;)H( 2k+1 2 ) ||L ([ .+ )) kZ:O (m) ( wp
T QL ()
< C Mdt<+oo.

0 7fl#»l/;n

Then the series in (4.15) absolutely and uniformly converges and the equality in (4.15)
is true everywhere in [a, +00).

To prove the first relation of (4.13) we use (2.8) in an equivalent form and with the
previous notations we obtain

ok+1,, /P
[Py — Pr)ull. < K () (Pyssim — Paim) )07

\ Aok+14,
ok+1p, \ VP _
(2 B,

p

<

B \/QAok+1,,
k+1 1/p

< oG (1)
Aok+1yy, 2Fm W,p

It follows
k
I(f = Pr)wllee < Hm[[(Pyrsi = Porp) wil = lim Z (Pois = Paipn) w
S W (f,
< Z [(Pai+tm — Paim) w0 < 0/0 — iyt
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To prove the second estimate in (4.13) we observe that, with P, as the polynomial

of best approximation in LY | we have

o (1 00) < o= rauls () el ]
- c Em(f)woo+<F> Hp(r)@Mp(\/%)l/P].

Now for the first term let us use the first estimate of (4.13). The second term, by
proceeding as in [3], p.99-100 (see also [1]) is dominated by

m \"7 Qg (f7 ap QG (f e
() [ lh ey o [ D,

ti+1/p
Then the second estimate in (4.13) follows.

Vam

Finally to prove (4.14) we write

[fwllee < NI(f = Powlloo + [[Prwljoo

with P; as best approximation in L? . Since

[Prwllee < KPywll, < 2K|| fwll,

for the first term we use the first estimate of (4.13) with m = 1.
To show the last part of the theorem we proceed as in the proof of (4.13), using
inequality (2.9) in place of (2.8). O

5. Fourier Sum and Lagrange Polynomial

The approximation of functions by means of their Fourier sums in the system

{pm<wa)}ma where pm(waam) = 'mem + - s Ym > 07 and

“+o0
/ pm(wayx)pn<waam>wa(x)dx = 6mn;
0

is useful in different contexts. Moreover, the weighted Lagrange interpolation based on
the zeros of p,, (wa, ) is useful in numerous problems of numerical analysis, too. We
will consider these two approximation processes in the space LP, where u(x) = :ﬂe*%ﬁ
and 1 < p < +o0.
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5.1. Fourier Sums. For f € L?, the m-th Fourier sum S,,(wq, f) is defined as

follows
m—1
waa f Z Ckpk wa
k=0

where
+oo
o= [ HOPwa Oa (i
0

Analogously to the cases of Laguerre, Hermite and Freud polynomials (see [10]) the
uniform boundedness of Sy,(ws) in L% holds true for p € (3,4) and then for a
restricted class of functions. This fact leads to modify the polynomial S, (wq, f)
following a procedure used in [7][6][10] that we will briefly illustrate. Let @y, 1= am (u)

be the M-R-S number related to the weight uw. Let 6 € (0,1), M = ll"jr%J ~ m and

let Ag,, be the characteristic function of the segment [0, fa,,]. Then, using (2.3) with

u in place of wug, for every f € LY, we get

1F (1 = Bgm)ully < C (Bar(fup +e 4™ fullp) (5.1)

and
I full, < C (Il fAomullp + Ent(fup) - (5.2)

where 1 < p < +oo and Ep(f)u,p is the error of best approximation of f in IPyy.
Therefore, by (5.2), it is sufficient to approximate the function f in the more re-
stricted interval [0, 8a,,] or, equivalently, to replace {S,,(wq, f)}m with the sequence
{9 Sm(Wa, fAgm) }m, Where ay, = apm(wy) and Ay, is the characteristic function
of [0,0a,,] with 8 € (0,1) arbitrary. The theorems that follow show that this proce-

dure is convenient.

Theorem 5.1. Let u € LP with 1 < p < +o0. Then, for every f € L there exists a
constant C # C(m, f) such that

HSm(wou Aémf)AGmUHp < CHfAQmUHp (53)

if and only if

VY ve 1
€ LP(0,1) and —— e L90,1 5.4
T €170 and ([T e 110,0) (5.)
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where v°(x) = 2, 0(x) = /T and p~' + ¢~ = 1. Moreover, under the conditions

(5.4), (5.3) is equivalent to

11 = Dom Sm(was Dom flully < C (Bar(flup + e | fullp), (5.5)

where A and C are positive constant independent of m and f.

As an example, if f € WP(u),r > 1, and (5.4) holds true, we have

am \ "
I = BamSn s Bl < € (L ) g

i.e. the error of best approximation of functions belonging to WP (u). If w,(z) =
e~ and u(z) = 27e~% (Laguerre case), then Theorem 5.1 is equivalent to Theorem
2.2 in [10]. Moreover, as in the Laguerre case, if (5.4) holds true with 1 < p < 4 then

we get the estimate
[Sm (wai, Bgm f) Aomullp < Cllf Agmullp (5.6)

and if (5.4) holds true with p > 3 then it results

S (tes £)Agmlly < Cllfull (5.7)
Moreover, we have
o e Fully < Cllfully, (5.8)
m# | full,
S (e, Full, < € (5.9)
I fu(l+ 2,

if (5.4) is satisfied with p € (%, 4) orp € (1,400)\ [%, 4] respectively. The cases p =1
or p = +oo are considered in the following theorems.

Theorem 5.2. Let f be such that

“+o0
/O | @)u()|log* | F(z)] < +oo,

with
if |z <1
log* |z| = .
log|z| if 2> 1.
If
VY 1 v 1 oo
€L and ——cL>®, v(x)=2a", )=z, (5.10)

VA" p VY
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then we have
+oo
HSm(wm Agmf)uAgmHl <C [1 + / |fu\(at)(1 + logJr |f(m)| + logJr :L')d.’L' s
0

with C # C(m, f).

8
Theorem 5.3. Let f € L u(z) =aYe”2,8>4,7>0. If S+ <v< 943,
then we have

||Sm(waa A@mf)UABmHoo < C”fAOmu”oo(lOg m)a

where C # C(m, f).

Theorems 5.1 and 5.2 and estimates (5.6)-(5.9) have been proved in [10].
Theorem 5.3 has been proved in [6].

5.2. Lagrange interpolation. If f is a continuous function in (0,+o0) then the
Lagrange polynomial interpolating f on the zeros z1 < a9 < -+ < 2, of P (wy) is

defined as

m

Lo, f2) = 3 @) f @), 1) = Lm0 ®)

gt P (was k) (@ — zp)”

In the sequel we will consider the behaviour of L,,(w, f) in LP. with u(z) = e 7

Analogously to the Fourier sums, the behaviour of L,,(w,, f) in L? is “poor”, i.e. it
can be used with good results only for a restricted class of functions. For example, if
p = +oo and f € Lg° with v > 0, then for every choice of a and 7,
[ L (wa)| :== | Sll‘lp | L (was flufleo > Cm?,
fulleo=1

with p > 0 and C # C(f, m). Then, as for the Fourier sums, we modify the Lagrange

polynomial. To this end, we introduce the following notations. Let

zj = min {xp : zr > ban},
k=1,....m

where 0 € (0,1) and a,, = am(w,), m sufficiently large. With

0 ifx<0 .
U(x) = B and V,(z) =V (a:x]> ,

1 ifz>1 Lj—Ti-1
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define the truncated function f; := ®; f, where ®; = 1 — ¥;. By definition, we deduce
that f; has the same smoothness as f and

f@) ifwe0,m]

fi(x) =

0 if z € [2j41,+00).
Now, letting 6; € (0,1) and denoting by Ag, := Ay, the characteristic function of
[0, 816, we consider the behaviour of the sequence {Ag, Ly, (wq, f)}m in LY, u(z) =
27e” 7,1 < p < +o0.
Theorem 5.4. If the parameters a and v of the weights w, and u satisfy

a+1< <a+5 >0
9 Ty=T=9 Ty 70

then
186, L (wa, fj)ulloo < Cl[fjullo (logm),
with C # C(m, f).
The following lemma will be useful in the sequel, but it can be used in more
contexts too.
Lemma 5.5. Let 0 <0 <01 <1,1 <p < +o00 and Axy, = 241 — . Then, for an
arbitrary polynomial P € Py (1 fized integer), we have

O1am

J
> Awg|Pul?(xy) gc/ | PulP (z)dz,

k=1 T1
with C # C(m, p, P).
In order to simplify the notations, from now on we let v”(z) = z*.

Theorem 5.6. Let 1 < p < +o0o and assume that

7 Ve D
P vve q _ __b
\/WGL and = €LY o(z) =, 9= (5.11)
Then, for every f € C°(0,+00), we have
J
| L (wa, f)uldg, [l < €D Ay ful? (), (5.12)

k=1
with C # C(m, f).
The following lemma estimates the right-hand side of (5.12) in terms of the
main part of the modulus of smoothness.
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Lemma 5.7. For every function f belonging to C°(0,400) we have

i » LT
(Z Asck|fu|p(a:k)> <cC l||fu||,;p(0,z].) + (M) / mdt] ,

1
k=1 m 0 tHts

=

with r < m and C # C(m, f).
Now we can state the following

Theorem 5.8. Under the assumptions of Theorem 5.6, for every continuous function

in (0, 400), we have

T\ P QL(f )
II[f—Aole(wa,fj)}UIIpSCK\/:T )/ “fﬂf’pdwe“mnfw],

where the constants A and C are independent of m and f.

As an example, for every f € WP(u), we have

I = Ao Lo, Ml <€ (L22) 1l

that is the error of best approximation in W2 (u).

6. Proofs

We first state two propositions whose proofs are easy.
Proposition 6.1. Let = € [(2rh)?,h*], with h* = —%—. 3 > %, and y € [xv —
h2B8—1
rhy/z,x + rhy/z]. Then it results:

Wap(T) ~ wap(y),
[13 ”

where the constant in “ ~ 7 are independent of x and h.

Proposition 6.2. Let z > 0 be such that weg(x) = x“e‘xﬁ,ﬁ > L is a non-decreasing
B 2

function in [z,4+00]. Then, for every f € WP(wag), withr > 1 and 1 < p < +o0,

(/;OO ‘waﬁ(x) /:(:r — )" ) (w)du

with C # C(f, z,p).

p P C -
dx < ———\f"" 0 wasllp,
> - (2675)7’ ||f ,3”17

Proof of Theorem 3.1. We first point out the main steps of the proof. In order to

prove (3.6), constructing a suitable function Gj € WP(w,g), we state the inequality

K(ft ) wasp < COLfo ) wapp- (6.13)
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Let tg < 8r2h2 <t <ty < --- < t; < h* <tjr1,h > 0, be a system of knots such
that t;41 — t; ~ h/t;,1 =0,...,j. With ¥ € C*°(IR) a non-decreasing function such
that

0 ifz<0
\I/(JJ):
1 ifx>1,

and with vy, = %, define the functions Ui(x) = ¥ (tm_zi" ), where k =
k+1—Yk
1,2,...,5 and ¥o(z) = 0 = ¥4 (z). With

£ () :rr/: /0 (;H)ZH (?)f(:v—i—lr(ul +-~-+ur))> duy ... du,

and

2
Fu@) = 3 [ hfrat @)

2

we introduce the function
ZFM YW1 (2)(1 — Ug(x)). (6.14)

After that, in order to prove the inequalities

I(f = Gr)wagsllLr(8r2n2 > —
ri ) g ) o ) éC”waﬁAh@fHLP(&Qh?,Ah*)v
RUIG e waﬁ”LT’(8r2h27h*)

for some constant A, it is sufficient to repeat word for word [3], p. 194-197, with some
simplifications due to the forward difference ZW appearing in the definition of the
modulus QF,. Thus (3.6) follows. In order to prove the inverse inequality of (3.6), we
now prove that for every g € W2 (wqz)

=
lwas Ane fllLe (sr2h2,he)

<C {H(f — 9)wagl Lr(sr2n2, an+) + hr”g(T)SDTwaﬂ||LP(87-2h2,Ah*)} ;

with A =1+ = fact, we have

s () B ) <Z()|f 91z + (r = K hv/E) e (2) + e (@) (B ) (@)
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Now, z and z + (1 — k)h+/ belong to [872h%, Ah*] and |z — (v + (r — k)h/T)| < rhy/T.

Thus, by Proposition 6.1, wag(z) < Cwag(z + (1 — k)hy/z) and

— r r
s Bngl = Doy < €3 ()16 = hanlc + (= DAV oo
k=0

< C27||(f — g)wapllLr(sr2nz, Anv),

making the change of variable v = = + (r — k)h+/z and using |%| < 2. Moreover,

since

1 ,t1 tr_1
Nrg(z) = r!h’“/ / / 9@+t 4+ t))dty . dt
o Jo 0
=: r!h’”/ ¢ (x + hr)dT,,
T,
with 7=t + -+t <rand T, =[0,1] x [0,¢1] x - -+ x [0,¢,], we can write
won(@)Bip9() = i) [ 9@+ hrvE)uaa(o)d;.

r
1
P p

T

/ g(r)(as+h7\/5)wa3(x)dTT
B
CrinT / /
T, 8r2h?2

e RN
Ch" / 9" wap| (u)du |
8r2h2

being fT, dr, = % Then the equivalence (3.6) easily follows. Now we prove equiva-

Consequently, by Proposition 6.1, we have

— h*
||wa,8Az<p9||Lp(8r2h2,h*) < Crlh" /
8

r2h2

IN

v
g(T)Sﬁrwaﬁ ’p (x+ h’rﬁ)d.’ﬂ) T,

IN

lence (3.5), i.e.

w;(fv t)w,w,p ~ K(f7 tr)waﬁ,p'

In order to prove

w;(fﬂ t)w{w,p S CK(f7 tT)waﬁ,pv

since
Q&(f’ t)waﬁ,p S CK(f7 tT)waﬁ,pa 1 S p S +OO,
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holds true, it remains to prove that the first and third terms in the definition of wy

are dominated by the K —functional. About the first term, in [1], p. 200, we proved

—T

that, with u, = x%e™7,

inf ||(f = ¢ )uallLrsrze) < CI(F — 9)tallLroosrze) + 71197 0 ua o o,8r202)
qr€

and then, since e™% ~ e ~1forze [0, (2rh)?], we can replace u, with w,s in the

above norms. About the third term, we have

inf  [[(f — ¢r—1)wagllLrt 4 00) < I(f — 9WapllLr (it +00)
QTflelprfl
+1[(g = Tr—1)wapll Lr(t* 4005

where g € WP(wyg) is arbitrary and T,_; is the Taylor polynomial of g with initial

P ¥
d:r) .

Then, using Proposition 6.2 with z = t* and f = g, the right-hand side of the above

point t*. Consequently

+oo x
(g — Tr—1)wapllLr(t,100) = (/ ‘waﬁ(x)/t (z —u)" gD (u)du
" )

g(r)(prwa,BHLP(t*,+00)- By definition t* = t2L31271 )

equality is dominated by ﬁ
(™%

1
28—1

()%

i.e.

]7- =", and the inequality

w:;(fv t)wa/a,P S CK(f, t*)wa,g,p

follows. In order to prove the inverse inequality, recall that for two suitable polyno-

mials p; and ps belonging to IP,._q,

I1(f = pO)wasll Losrizy + 11D 0" wagll rsrey < WL Dwapp

1(f = P2)wasll Lo —1,400) + 1 1PS 0" M Wapll o —1400) € WH(fs g

as previously proved. Moreover, for the function G¢(x) defined in (6.14), the inequality

[(f — G)wagllLrsr2ez ey + tr||G1£T)‘Prwaﬁ||LP(8r2t2,h*) < CU(f, ) wasp

< Cwip(fs Dwap,p
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holds. Now, with x; = 4r2t2, 29 = 82t2, x5 = t* — 1, x4 = t*, consider the function
) (v (5= e
Ty — T3

Do (222

(1_\D<x—x1
To — X1

Ft(l‘) =
T—zx
+ v ( > )pg(x).
Ty — T3
Obviously I'y € WP and it is not difficult to verify the inequality
(f = T)waglly + |8 6" wasl Loqsrez ney < COl(Fr s
O

Thus the proof of the theorem is complete
In order to prove the theorems on interpolation, we recall some basic facts on

2
3

the orthonormal polynomials {p,, (wea ) }m- The zeros of p,, (w,) are located as follows
_ C)
— )

C <z1<~'~<xm§am(l

1

1
3

Moreover,
Vam
Azp = Tpy1 — T ~ NET
m 1 — X +
Am m3

where a,, = am(wy) and C is a positive constant independent of m. The following

C
)
1
Pl
3

m

1— 2
Am

| <

Yamx i

estimates are useful
Wa ()

[P (Wa, )

where C4% <z < Ca,,(1 +m~3) and C # C(m, z), and

1
1=y 2 k=1,
m3

1
~ \4/:ckamAzk
Am
are independent of m and k. The above estimates can

P (Wars 1)/ wa ()|
R

“
~

where the constants in
be found in [5] or can be directly obtained by [4]
)(@i)

Proof of Theorem 5.4. Since
J
w(x) Ly (Wa, fj, ) Zu
i=1
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la(z)

~ 1, for z € [0,z;].

and, denoting by x4 a knot closest to x, it results ‘u(m)

u(za)
Then we have
L u(x)
|w(2) L (wa, £, )] < Cllfull o o.ey | 1+ () L ()] | - (6.15)
i=1 g

i#d

Using the previous estimates and a Remez-type inequality, we get

Rttt ,
|u(:17)pm(wa,x)| <c (:c) Ax;

|z — 24

|pr (Wa, i) u(z;) Zi
where i = 1,2,...,5,i#d, and = € [%,xj] . Then, under the assumptions of o and
7, the sum in (6.15) is dominated by log m and the theorem follows. O

Here we omit the proofs of Lemmas 5.5 and 5.7 and the proofs of Theorems 5.6
and 5.8, being completely similar to the proofs of Lemmas 2.5 and 2.7 and Theorems

2.6 and 2.8 in [10] respectively.
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