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SOME PROBLEMS ON OPTIMAL QUADRATURE

PETRU BLAGA AND GHEORGHE COMAN

Dedicated to Professor D. D. Stancu on his 80'™ birthday

Abstract. Using the connection between optimal approximation of linear
operators and spline interpolation established by I. J. Schoenberg [35], the
-function method of D. V. Ionescu [17], and a more general method given
by A. Ghizzetti and A. Ossicini [14], the one-to-one correspondence be-
tween the monosplines and quadrature formulas given by I. J. Schoenberg
[36, 37], and the minimal norm property of orthogonal polynomials, the
authors study optimal quadrature formulas in the sense of Sard [33] and in
the sense of Nikolski [27], respectively, with respect to the error criterion.

Many examples are given.

1. Introduction

Optimal quadrature rules with respect to some given criterion represent an
important class of quadrature formulas.

The basic optimality criterion is the error criterion. More recently the effi-
ciency criterion has also been used, which is based on the approximation order of the
quadrature rule and its computational complexity.

Next, the error criterion will be used.

Let

A={N|XN:H™?[a,b] >R, i=1,N} (1.1)
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be a set of linear functionals and for f € H™? [a,b], let

AN)y={n(f)]i=1N} (1.2)

be the set of information on f given by the functionals of A.

Remark 1.1. Usually, the information \; (f),i =1, N, are the pointwise evaluations
of f or some of its derivatives at distinct points x; € |a,b], i = 0,n, i.e. the pointwise
information.

For f € H™? [a,b], one considers the quadrature formula

b
[ 0@ 1 @) s =y (1) + Ry (1), (13)

where

N

Qn () =D AN (f),

i=1
Ry (f) is the remainder, w is a weight function and A = (Ay,..., Ay) are the coef-
ficients. If \; (f), ¢ = 1, N, represent pointwise information, then X = (zo,..., )

are the quadrature nodes.

Definition 1.1. The number r € N with the property that Qn (f) = f (or Ry (f) =
0) for all f € P, and that there exists g € P41 such that Qn (g) # g, (or Ry (g) #0)
where Py is the set of polynomial functions of degree at most s, is called the degree
of exactness of the quadrature rule QN (quadrature formula (1.3)) and is denoted by
dex (Qn) (dex (Qn) =T1).

The problem with a quadrature formula is to find the quadrature parameters

(coefficients and nodes) and to evaluate the corresponding remainder (error).

Let
En (f,A,X) =[Rn (f)|
be the quadrature error.

Definition 1.2. If for a given f € H™?[a,b], the parameters A and X are found
from the conditions that En (f, A, X) takes its minimum value, then the quadrature
formula is called locally optimal with respect to the error.
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If A and X are obtained such that

Ey (H™?[a,b],A,X)= sup Ey(f A X)
feEH™2[a,b]

takes its minimum value, the quadrature formula is called globally optimal on the set
H™?2 [a,b], with respect to the error.
Remark 1.2. Some of the quadrature parameters can be fized from the beginning.
Such is the case, for example, with quadrature formulas with uniformly spaced nodes
or with equal coefficients. Also, the quadrature formulas with a prescribed degree of
exactness are frequently considered.

Subsequently we will study the optimality problem for some classes of quad-

rature formulas with pointwise information \; (f), ¢ = 1, N.

2. Optimality in the sense of Sard

Suppose that A is a set of Birkhoff-type functionals

A= Ap = { X | 2 (F) = 9 (21), k=07, j € I

where z, € [a,b], k =0,n, and I}, C {0,1,...,r;}, with rpy € N, rp <m, k =0,n.
For f € H™?[a,b] and for fixed nodes x;, € [a,b], k = 0,n, (for example,
uniformly spaced nodes), consider the quadrature formula
b n
[ F@de =303 Af @) + Ry (7). (21)
a k=0j€l
Definition 2.1. The quadrature formula (2.1) is said to be optimal in the sense of
Sard if
(i) Ry (e;) =0, i=0,m—1, with e;(z)= 2",
(ii) /b K2 (t)dt is minimum,
where K,, is Pea:w’s kernel, i.e.
£yt

=" o™ & (x5 —
<m_+1>1]: T A

k=0j€l} J

K, (t):= Ry
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Such formulas for uniformly spaced nodes (z = a + kh, h = (b —a) /n) and
for Lagrange-type functionals, A\ (f) = f (zx), k = 0, n, were first studied by A. Sard
[32] and L.S. Meyers and A. Sard [24], respectively.

In 1964, I. J. Schoenberg [34, 35] has established a connection between optimal
approximation of linear operators (including definite integral operators) and spline
interpolation operators. For example, if .S is the natural spline interpolation operator

with respect to the set A and
f=Sf+Rf

is the corresponding spline interpolation formula, then the quadrature formula

/abf(x) dx = /ab (Sf) () dx+/ab (Rf) (x) dz (2.2)

is optimal in the sense of Sard.
More specifically, let us suppose that the uniqueness condition of the spline

operator is satisfied and that

(SH) (@) =D > swy (@) f9) (),

k=0j€l,

where si;, k =0,n, j € I, are the cardinal splines and S is the corresponding spline

operator. Then the optimal quadrature formula (2.2) becomes

b n
[ rde =373 Ap, 19 @)+ R (5).

k=0jel;

with

b
zj:/skj(x)dx, k=0,n, jé€l,
a

and
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Example 2.1. Let f € H>?[0,1] and let the set of Birkhoff-type functionals Ap (f) =

{r©),r(3).f (%) (1)} be given. Also, let

($11) (@) = 501 (@) ' (0) + 10 0) ()

+ 520 (2) f (i) + 531 () I (1),

be the corresponding cubic spline interpolation function, where sg1, S10, S20 and s31

are the cardinal splines. For the cardinal splines, we have

+ +
1 2
_Z("If—l)_‘_,
3 3
19 3
slo(x)_w—3(x—0)2++4<x—4> —4<x—4>
+ +
—3(3:—1)1,
3 3
3 1 3
S20($):—1(}+3($—0)2+—4(l‘—4) +4<x—4>
+ +
—1—3(917—1)2+7
3 3
1 1 1 3 )
i) =g g0k (o-3) - (v-7) et

while the remainder is

1
(Raf) (x) = / 2 (1) 17 (1) .

with
o2 (2, 0)=( t>+<i t)+5m () (j t>+320 (2) 531 (2).

It follows that the optimal quadrature formula is given by

1
| 1@ o=@+ aiof (3 ) +anf () 4458 R,

where

1 1 1

AY = ——, Ajg=-, Ay=-, AL =—
20 27 31 967

25



PETRU BLAGA AND GHEORGHE COMAN

and

with

Finally, we have

[N

m | <17 ([ s 0] )

i.e.

Ry ()] < 2 171,
’ ’ 48v/5

3. Optimality in the sense of Nikolski

Suppose now, that all the parameters of the quadrature formula (2.1) (the
coefficients A and the nodes X') are unknown.

The problem is to find the coefficients A* and the nodes X* such that
for local optimality, or

E, (H™?[a,b],A*, X*) =min sup E,(f,A,X
( [ ] ) AvaeHmv2[a,b] n( )

in the global optimality case.

Definition 3.1. The quadrature formula with the parameters A* and X* is called
optimal in the sense of Nikolski and A*, X* are called optimal coefficients and

optimal nodes, respectively.

Remark 3.1. If f € H™? [a,b] and the degree of exactness of the quadrature formula

(2.1) isr —1 (r <m) then by Peano’s theorem, one obtains

b
RMﬂ=/KMMm®% (3.1)
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where
)r j—1

R D) BRIt e

k=0j€l}

From (3.1), one obtains

, (/ab K2 (t) dt) 2 . (3.2)

It follows that the optimal parameters A* and X* are those which minimize

F(A,X):/be(t)dt

There are many ways to find the functional F'.

By (D] < £

the functional

1. One of them is described above and is based on Peano’s theorem.

Remark 3.2. In this case, the quadrature formula is assumed to have degree of

exactness v — 1.

2. Another approach is based on the ¢-function method [17].
Suppose that f € H™?[a,b] and that a = 79 < ... < ,, = b. On each interval

[Tr_1,7k], k = 1,n, consider a function ¢y, k = 1,n,, with the property that

D"y, := cpg) 1, k=1,n. (3.3)

We have

/f dx—Z/x“ f(z)da.

Using the integration by parts formula, one obtains

Tk

Tk—1

b n
/ f (Jj‘) dl‘zz{ |:SO§€T 1) f o\ (r— 2)f ot (_1)7‘—1 @kf(ril):|
“ k=1

e [ ) 10 @ dx}
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and subsequently,

n—1 r

where
@ =L, k=1,n. (3.5)
[Tr—1,7k]
For
(r—j) AOJa ] S IOa
(=1 17 (2x0) =
07 .7 € J07
1 (r—j) Akj7 .7 S Ik7
(=17 (er — 1) () = (3.6)
07 ] S ka
i . Anjv je I’ru
(=1 o) (@) =
0, J € Jn,

with J, = {0, 1,...,7%}\ I, formula (3.4) becomes the quadrature formula (2.1), with

the remainder

It follows that

and
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Remark 3.3. From (3.3), it follows that @y is a polynomial of degree r : ¢y, (x) =
i—: + Pr_1 (x), with Py € Pr_1, k = 1,n, satisfying the conditions of (3.6).

Example 3.1. Let f € H*?[0,1], A(f) = {f (z) | k=0,n}, with 0 = zy < 1 <

e < X1 < xp =1, and let
1 n
/0 f@)de =3 Auf (1) + Ra (f) (3.7)
k=0

be the corresponding quadrature formula. Find the functional F (A, X), where A =
(Ag,..., Ap) and X = (xg,...,Zn) .

Using the p-function method, on each interval [xx_1,x] one considers a
function g, with ¢} = 1.

Formula (3.4) becomes

| 1@as=-s 050+ S (6 — Ponn) (1) £ (20)
k=1
Lol ()£ (1) + g1 (0) f (0)
n—1 (38)
S (o — ) @) () — o (D) £ ()
k=1
+/0 o (@) " (z) da.

Now, for

90/1(0):_‘407 (‘p;f_(p;c—s-l)(zk):Akv k=1,n—-1, @fn(l):ATM

(3.9)

formula (3.8) becomes the quadrature formula of (3.7).

29



PETRU BLAGA AND GHEORGHE COMAN

From the conditions ¢}, =1, k = 1,n, and using (3.9), it follows that

o1 (z) = ?—on,
22
wg(x):?—on—Al(x—m),
22
@n(x):?—on—Al(x—xl) = Apg (@ —xp_q)

F(A,X):/OngQ(x)dx:kZ::l/:k &2 (2) da

or

F(A X) Z/m 1[—962.4 +ZA:C]2

Remark 3.4. A generalization of the @-function method was given in the book of
A. Ghizzetti and A. Ossicini [14], where a more general linear differential operator of

order r is used instead of the differential operator D".

3. A third method was given by I. J. Schoenberg [36, 37, 38] and it uses the one-to-one

correspondence between the set of so called monosplines
x"
B= 0 Y Ao,
s 0j€l

and the set of quadrature formulas of the form (2.1), with degree of exactness r — 1.

The one-to-one correspondence is described by the relations

Agj=(=1)""T MY (20), € Io,

Akj = (_1)] M’Sr_j_l) (Jfk _0) _M’Sr_j_l) (J?k—f—o) ) k= 1, ’I’L-l,j GIk;,

Apy= (=1 M (@), G € I,
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and the remainder is given by

b
Ry (f)= (1" [ M. (x) f") (x)de

a

So
F(APX):Z/bAﬁ(x)¢u

In fact, there is a close relationship between monosplines and -functions.

Remark 3.5. One of the advantages of the @-function method is that the degree of

exactness condition is not necessary, it follows from the remainder representation

b
Ry (f) = (—1)T/ v () o) (z)dx.

3.1. Solutions for the optimality problem. In order to obtain an optimal quad-

rature formula, in the sense of Nikolski, we have to minimize the functional F' (A, X).

1. A two-step procedure

First step. The functional F' (A, X)) is minimized with respect to the coefficients, the
nodes being considered fixed. For this, we use the relationship with spline interpola-
tion.

So let
f=Sf+Rf

be the spline interpolation formula with X = (zo, ..., x,) the interpolation nodes. If

n

(SF) () =D sy (@) f9) (ax)

k=0j€l}

is the interpolation spline function, then

b
Apj = Ay (xo,...,xn):/ skj(x)de, k=0,n, j€l,

are the corresponding optimal (in the sense of Sard) coefficients for the fixed nodes
X and
b
Ry (f) = [ (Bf) @) ds
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is the remainder. So

with

Second step. The functional

F (A X):= /bKi (t) dt

is minimized with respect to the nodes X.

Let X* = (z§,...,2}) be the minimum point of F (A X) , i.e. the optimal

nodes of the quadrature formula. It follows that A;j = Agj (xh,...,x8), k= 0,n,

) n

j € Iy, are the optimal coefficients and that

/K* £ (t) dt,

xk—t)r i-1

K:(t):(b ZZA RSN

k=0j€l}

. (/ab [K: (t)th)é

Example 3.2. For fe€ H?>?[0,1] and Ag={f"(0), f(x1), f'(x1), f (1)}, with z1 €

with

is the optimal error. We also have

Ry (5] < £

(0,1), find the quadrature formula of the type
1
| £ @ do= A0 f O+ Arof () + Anf (o1)+ Aar ' (1)+ B (1)
0
that is optimal in the sense of Nikolski, i.e. find the optimal coefficients
A" = (ASUATO,AL, A%y)

and the optimal nodes X* = (0,27%,1).
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First step. The spline interpolation formula is given by

f (@) =s01 () f/(0) + s10 () f (x1) + 511 () f' (21) + 521 () f' (1)

+ (R4f) (l‘) )
where
oy () = - C(@=07 (-1
ot 2 211 2x,
510 (.Z‘) = 1,
n @-02  (@-z))  (@-12
s11 (7)) = —— + - - )
2 25U1 2.’E1 (1 —$1) 1 — X1
(x — xl)i (x — 1)3_
s91 (7) = B - :
(1—2x1) 2(1—x)
It follows that
2 — 1-2 — 1-
Ao = *ﬁ7 A =1, n=-—z Il, Ay = ( 6I1) ) (3.10)
_ (1—1t)° 1 — 224 o (1—m)°
KQ(t): 5 7($17t)+f 3 ( 17t)+7 6
and
_ L, 1 1
F (A X) :/ K, (t)dt = g—gxl(l—xl) (1 -z +27).
0

Second step. We have to minimize F (Z,X) with respect to x1. From the equation

OF (A, X) 1 ) 2]
Tf—g(lflm) [a:lJr(lf:cl) } =0,

we obtain x1 = - Also, (3.10) implies that

Apy = —i Ajp=1, A}, =0, A3 = 2£4.
Finally, we have
1 2\ 1
Rz (0| < |7 2(/0 E10] dt> - m‘f” ;
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3.2. Minimal norm of orthogonal polynomials. Let P, C P, be the set of
polynomials of degree n with leading coefficient equal to one. If P, € ﬁ" and P, L

Prn—1 on [a,b] with respect to the weight function w, then

1Bl o = min [| 2]
P

n

w,2

where

1Pl 5 = (wa(x)P2@ﬂdx)2.

It follows that the parameters of the functional F' (A, X) can be determined such that
the restriction of the kernel K, to the interval [x;_1, 2] is identical to the orthogonal

polynomial on the same interval with respect to the corresponding weight function.

Example 3.3. Consider the functional of Example 3.1

HAM:Z/ 2 (z) de,

with
2
T
1 () = 5 Aoz,
2 k—1 k—1
wr () = — foAZerZAm, k=2n-1,
i=0 i=1
1—x)?
one)= U2 4

Since for w = 1 the corresponding orthogonal polynomial on [xy_1, zk| is the Legendre

polynomial of degree two

by (x) = :cj B L + (e + xk)Q — (k= xk71)2

and
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from o = lo, k =2,n—1, one obtains

kz_:lzi _ ZTk-1 +J7k’
i=0 2
(3.11)
k_l— (l’k—l + l‘k)Q (a:k — l‘k_l)z -
Aixi = - ) k - 2,7’1 -1
, 8 24
=0
and thus
n—1 Tk ) 1 n—1 .
Z/l ¢ (v) do = 720 Z (zr — Tp-1)" (3.12)
k=2"Tk-1 k=2

Taking into account that ¢1 and ¢, are particular polynomials of second degree to

which the above identities do not apply, from the equations

i/ml 2 (@) de| =0 ‘9/1 2 (1) dz| = 0
8A0 0 gpl v v - ’ aAn Tpn—1 (pn * . N ’

— 3
AO = -, An = g (]. - ‘rnfl) (313)

Tl 12 o 2 1
Y Aoz dz= —2f
/0 ( 2 °x> T 3900

one obtains

and hence

R ) ) (3.14)
—r _ 5
— —A,(1- dr=—(1—2x,1)".
/x [ 2 ( x)] =53 (L~ @)
From (3.12) and (3.14), it follows that
1 1= 1
F(AX)=—z4+ — —zp)’ + — (1 =2y’
(4, X) 320”1+7201;2(”3’c )" F 5o (L= @)
which can be minimized with respect to the nodes X.
First, we have that
0 [~ 5] _ s s 19—,
P2 Z (vi—xi1)” | =5 [(xp — k1) — (@py1 —2x) | =0,
i=2
which implies that
Tp — Tp1 = %, k=2,n-1, (3.15)
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and thus

(In—l - $1)5

_ 1 1
FAX)=—alt ——
’ 320 — o)

720 (n — 2) (3.16)

=+ % (1 — CCn_l)s .

Next, the minimum value of F (Z,X) with respect to x1 and x,_1 is attained for
"'C,I( =1- $;71 = 2:“7

where
1

T4t (n-2)V6
Finally, from (3.15), (3.11), (3.13) and (3.16), one obtains

I

x5 =0; zp= 2—|—(k—1)\/6},u,k:1,n—1; xy =1;

* 3 * 5+2\/6 * 5 9
Aj=Ay =" A=Al =——p Ai=pV6, k=2,n=3;

and

1
F A* X* - 4
(A%, X7) 55~

which is the minimum value of F (A, X).

4. Optimal quadrature formulas generated by

Lagrange interpolation formula

Let A(f) = {f(z;)|i=0,n}, with z; € [a,b], be a set of Lagrange-type
information.

Consider the Lagrange interpolation formula
f=Lof+Ryf, (4.1)
where .
(Lnf) (x) = kZ:O (x_z:%f (k) ,
with u (z) = (x — z0) ... (x — z,) and for f € C""1[a,b],

u(z)

(Ryf) (z) = (n+1)!f(”+1) &), a<&<b.
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If w: [a,b] — R is a weight function, from (4.1) one obtains

b n
/ w(@) f () dr =3 Af (2x) + R (), (4.2)

k=0
where
Ay = /abw(x) mdx (4.3)
and
Ry (f) = ﬁ / (&) u (@) £ () da
We also have
B0 ()] € g [0 [ w @ @ (1.0

Theorem 4.1. Let w: [a,b] — R be a weight function and f € C" "1 [a,b]. Ifu L P,,
then the quadrature formula (4.2), with the coefficients (4.3) and the nodes X =

(zo,...,xy) - the roots of the polynomial u, is optimal with respect to the error.

Proof. From (4.4), we have

G s e@Va@ k@i @)

(n+ 1)
o
ra0] < g )L [ e @ dxﬂ/abwu) o]
So
R (1)) < Gl (4.6)
where
Cha= gy [Vl

If w L Py, on [a,b] with respect to the weight function w, then ||u|,, , is minimum,

i.e. the error |R,, (f)| is minimum. O
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Remark 4.1. Theorem 4.1 implies that the optimal nodes x, k = 0,n, are the roots
of the orthogonal polynomial on [a,b] with respect to the weight function w, say Pp41,

and the optimal coefficients Ay, k = 0,n, are given by

b .

P,

2:/ w (x) *HNEm) —dz, k=0,n.
a (x — ) Py (o)

For the optimal error, we have

LGN

P
nt w,2

4.1. Particular cases. Case 1. [a,b] =[-1,1] and w = 1.

The orthogonal polynomial is the Legendre polynomial

~ . (TL+1)' dn+1 2 n+1
i (@) = s e | @)™

The corresponding optimal quadrature formula has the nodes z}, k = 0,n, and the
coefficients A}, k = 0,n, of the Gauss quadrature rule. For the error, we have

(n+1)12n+2 Hf(nH)H

‘\ (2n+2)'V2n +3

|R: (f)

Case 2. [a,b] = [~1,1] and w (z) = —=2

122

The orthogonal polynomial is the Chebyshev polynomial of the first kind
Tyt (x) = cos[(n + 1) arccos (z)] .

The optimal parameters are

2k +1
‘%2:0087—’_7@ k=0,n,
2(n+1)
Tn+1() ™
dx = , k=0,n,
/ \/17x2(x—xk) n+1(a:k) n+1
and we have
1 (n+1) b e
)< o L (), ) ]
‘ (f) (n+1)' f oo _1V1—22 + w,2

™

V2 (n41)2n
Case 3. [a,b] = [-1,1] and w (x) = V1 — 22.

38
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The orthogonal polynomial is the Chebyshev polynomial of the second kind

1
Qn+i1 (x) = —=sin[(n + 2) arccos ()] .
1— a2
We have
kE+1
Qf; = COS mﬂ', k= O,n,
L .
p :/ V1—z? Q:H_E/(x) *
-1 (z — 2%) @y ()
1
E— sin? kt ), k=0,n,
n+2 n+2
and
1 (n+1) ' o
B0 < G [P (L V= ) Qo]
‘ n (.f) (n+1)' f o . € £ Q +1 w2
= o= 1)
(n+ 1)!2n+2 oo
4.2. Special cases. [a,b] =[-1,1] and w = 1.

Case 4. From (4.4), we obtain

2

Re (DI < oy

it follows that for u = T},41, the error |R,, (f)| is minimum. So

[Exasl T

Since

Tn—i—l g ||P||oo’ Pe 75n+17

HOO

n+1 = -1 n+1
and
70| < e |9+
" = (n+ 1)12n—1 oo

(4.7)
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Case 5. From (4.4), we also have

[Ra (£)] < 1 il

(n +1)!
In this case the minimum L; [-1, 1]-norm is given by the Chebyshev polynomial of

the second kind Q;,+1. So

*
T} = COS mw, k=0,n,

1 ~
Az :/ QnJrl( ) dx

—1 (7 — %) Qn+1 (z})
4 sin (k+1 ) %] sin [ (2i+1) (§+1) } (4.8)
- S e k=0,
n—+ 2 = 20+ 1
and
1
* | Nann], = e I
’R" (f)’ S (n+1)! Hf @ (n+1)2» / .
4.3. Other cases. Let
b n
[ F@de =3 auf (w0 + R (5) (1.9)
a k=0

be the quadrature formula generated by the Lagrange interpolation formula

= Y —’LL(.’E) xT €T
=Y G ) )@,

with u () = (z — z¢) ... (x — z,,) and

u (z)
(n+1)!

(Rnf) () = SOV, a<e<h.

We have .
. ()] < ﬁ”f(”“)“m / ju (2)] da.

If w is a weight function, then

/ab|u<x>|dx/:ﬁﬁ|u )z < [/11wd(§)}%||unw,g

Finally, we have

[Bn ()] < Crou llully 2
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ol L wwe]

It follows that the quadrature formula (4.9) is optimal when [[u[|,, , is minimum, i.e.

with

Cruw =

u is orthogonal on [a, b] with respect to the weight function w.

Case 6. [a,b] = [-1,1] and w (z) = =2

T—22
We get
2k+1
* —
Xy, COS2(n+1) , k=0,n,
L .
T,
;:/ i@ g k=T, (see (47),
—1 (@ —ap) Ty ()
and hence
)< )| (/ V-2 dx) T
e
(n+ 1)'2”*1 oo

Case 7. [a,b] = [-1,1] and w (x) = V1 — 22.

It follows that

L -

r = / Q*n—%/(m) —dz, k=0n, (see (4.8)),
-1 (z - %) Qn+1 (931@)

and thus

1 1 3,
(/ m“) HQnHHw,Q
o]

0] < o

B \/i(n—i-l 12n+1 H
Remark 4.2. From (4.5), we also have

R ()| < Cf oo Il

with
f

w,oo*(

val.
For particular orthogonal polynomials, we can obtain new upper bounds for the quad-

rature error.
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