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THE STUDY OF AN ADAPTIVE ALGORITHM
FOR SOME CUBATURE FORMULAS ON TRIANGLE

ILDIKO SOMOGYI AND RADU TRIMBITAS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We study two nonproduct quadrature formulas of algebraic
degree 2 and 3, respectively. The second is then turned into an adaptive
quadrature algorithm. A MATLAB implementation and some examples

are given.

1. The formulas

The purpose of this paper is to give some practical cubature formulas when
the integration domain is a triangle and also to study an adaptive algorithm for these

cubature formulas in approximation of the integral

I= [ f(z,y)dzdy, (1.1)
Th

where T}, is a triangular domain, Ty, = {(z,y)/x > 0,y > 0,z +y < h},and f: Ty —
R is an integrable function on 7). We shall consider two cubature formulas from
[8]. One of them is a cubature formula which satisfy the minimal condition of Stroud
regarding the minimal number of knots of a cubature formula [9]. The degree of
exactness of this formula is equal to 2. The other one is a cubature formula which has
more knots, but a greater degree of exactness. We consider the following practical

cubature formula:

[ [ s@pdedy =T 70,54 1G04 5G| R0 (12)
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The degree of exactness of this formula is 2, therefore we can use the Peano
theorem for the representation of the error, an we can give the following delimitation
of the approximation error:

Theorem 1. If fG9(.,0) € C[0,h], fZV(-,0) € C[0,h], f°3)(0,-) € C[0,h] and
f2(s,t) € C(Th) than we have

h® hd hd h®
< Mo f o 4+ Moy foe + Mosf e + Mysf — .
|R2(f)] < 30f720 + 21f364 + 03f720 + 12f24 (1.3)

where

b

_ (3,0)
Mso f nas, ‘f (s,0)

— (2,1)
, Moy f nas, ‘f (s,0)

— (0,3) ‘ _
Mos f féfﬁ’;i]‘f (0,8)|, Miof max

7(s,0)|.

Remark 1. The cubature formula (2) has an optimal character, because it satisfies
the condition established by Stroud in [9] regarding the minimal number of knots for a
cubature formula. If the degree of exactness of a cubature formula is equal to 2, then
the minimal number of knots is N = n + 1, where n is the dimension number. The
cubature formula (1.2) with the degree of exactness 2 and three knots, has a minimal

number of knots.

Let us now consider a cubature formula with a higher degree of exactness:
h? h
T 120 2

h h h h h

+81(5,5) +810.5)+ 2115, + Rat) (14

Because the degree of exactness of this formula is equal to 3, we can give the

following theorem for the delimitation of the absolute error:

Theorem 2. If f*9(s,0) € C[0,h], f*V(s,0) € C[0,h], fOY(0,t) € CI0,h],
fA3)(0,t) € C[0,h], and f3? (s, t) € C(Ty) then
7h® 7h® h® h®

hG
< Myof——+ M1 f—— +Misf—— 4+ My f—— + Mo f—
|R3(f)] < 40f8640 + 31f1440 + 13f1440 + 04f8640 + 22f768’
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where

b

Myof = max ‘f(4’0)(3a0)

, M3, f = max ‘f(g’l)(sao)

s€[0,h] s€[0,h]
= (1’3) = ‘ (0,4)
Misf tg?g;i]‘f (0,8)|, Moa f s, 0,1,
M g (2,2) t A
2o f e 59, )‘

We shall use an affine transformation to transform these cubature formulas
from the standard triangle T}, to an arbitrary triangle A with the vertices V;(x;,y;),7 =
1,2,3.

Let ¢ : R?> — R? denote the affine transformation from T}, to A,

o(@.y) =A@, 9) +b (1.5)
where
o — I r3 — 1
_ h h
A= Y2—Y1  Ys— U1 (1.6)
h h
and
T
b= (1.7)
Y1

Let J be the Jacobian matrix of the transformation, in this case J is independent of
(z,9), det J(T,y) = det A, and the transformation rule is

f(y)didy = |det A| /A F(o(@, 7)) dzdy.

Ty
2. Implementation

For a detailed description of an adaptive numerical integration algorithm see
[10, 7].

In this section we focus our attention to an adaptive algorithm, based on
formula (1.4). For implementation details on an adaptive algorithm based on formula
(1.2), see [3].
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Now, using the transform given by (1.5), (1.6), and (1.7), we rewrite (1.4) in

the form

area(A) 2 2
I~ —g 32f(%)+82f<Pi)+27f(G>, (2.1)

where
1 .
PZZE(PZ_‘_P])a {Za]ak}:{15273}a

are the midpoints of the edges of A, and G = %(Vl + V5 4+ V3) is the barycenter of A
(see Figure 1).

Fi1GURE 1. The elementary third degree formula

The intial triangle, A, is decomposed into four triangles, Ay, Ao, Az, and
Ay, determined by verices and the middle points (see Figure 2).

In the first step we apply the formula given by (2.1) to A. Then we apply the
same formula to each of the triangles A;, i = 1,...,4. Let I; be the value provided
by (2.1), and I, the value obtained by summing the four valued obtained applying

(2.1) to each of the four triangle of the subdivision. A possible stopping criterion is
|11 — IQ| <eg,

where ¢ is the desired tolerance. If the criterion is not fulfilled, then we apply the
same procedure recursively to each triangle of the subdivision. A detailed description
is given in Algorithm 1.
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F1GURE 2. The initial triangle and the subdivision

Algorithm 1 An adaptive cubature algorithm on triangle; call result :=
adapt(f, A, e), where f is the integrand, A is the triangle, and € is the desired toler-

ance; elem_formula implemntes the elementary cubature given by (2.1).

Let Ay, Ay, Az, Ay be the triangles determined by vertices and midpoints;
I1 := elem_formula(f, A);
12 := elem formula(f, A1) + elem_formula(f, As)+
elem_formula(f, As) + elem_formula(f, Ay);

if |I; — I| < € then

result := I;
else

result := adapt(f, A1, ) + adapt(f, Ay, )+

adapt(f, As,e) + adapt(f, Ag,);

end if

The papers [6, 5] give useful guidelines for implementation of adaptive cuba-
tures on triangle. We have implemented this algorithm in MATLAB'. The implemen-
tation follows the description given by Algorithm 1. The optional input parameter
trace, when it is nonzero, allows us to represent graphically the process of computing.

The optional output parameter stat gives us the number of function evaluation and

1MATLAB@is a trademark of the MathWorks Inc., Natick, MA 01760-2098
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the number of triangles. Some optimizations which save several function evaluations
are possible. Since the value I; is the value of the integral on A, we compute it once
and provide it further as an input parameter. We do the same thing with the values
of function at midpoints and barycenter.

In the sequel we give the MATLAB code.

function [vi,stat]=mpcubatd3mb(f,V,err,trace)
%MPCUBATD3MB - cubature with midpoints and barycenter,
% exact for P_372

%call [vi,stat]=mpcubatd3mb(f,V,err,trace,...)

%f function

%V - coordinates of vertices

%err - error

%trace - tracing indicator

global FEN TRIN sfl
if nargin <4, trace=0;
else

if trace

clf

end
end
if nargin < 3, err=le-3; end
sfl=[nargout==2];
if sfl

FEN=0; TRIN=0;
end
P=midpoints(V); G=sum(V,2)/3;
fv=feval(f,V); fp=feval(f,P); fg=feval(f,G);
area = 1/2*abs(det([V’,ones(3,1)1));
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Il=elform(area,fv,fp,fg);
if trace, tracefun([V,P,G]); hold on; end
vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,Il,trace);
if sfl

FEN = FEN+7;

stat=struct(’nev’,FEN, ’ntri’,TRIN);

end

function vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,ll,trace)
%QUADRG3 - cubature with midpoints and barycenter, internal use
%call vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,ll,trace)

%f - function

%V - coordinates of vertices

%P - midpoints coordinates

%G - barycenter coordinates

%fv - values of f at verices

%fp - values of f at midpoints

%fg - values at barycenter

%err - error

%harea - area of triangle

%I1 - the first estimation (elementary formula)

%trace - tracing indicator

global FEN TRIN sfl
area=area/4;
Vi=[V(:,1),P(:,[2,3]1)]; fvi=[fv(1),fp([2,3])];
Pi=midpoints(V1); fpl=feval(f,P1);
Gl=sum(V1,2)/3; fgl=feval(f,G1);
Il1=elform(area,fvl,fpl,fgl);
v2=[v(:,2),P(:,[1,3]1)]; fv2=[fv(2),fp([1,3])];
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P2=midpoints(V2); fp2=feval(f,P2);
G2=sum(V2,2)/3; fg2=feval(f,G2);
I12=elform(area,fv2,fp2,fg2);
v3=[V(:,3),P(:,[1,21)]; £fv3=[fv(3),fp([1,2])];
P3=midpoints(V3); fp3=feval(f,P3);
G3=sum(V3,2)/3; fg3=feval(f,G3);
I13=elform(area,fv3,fp3,fg3);
V4=P; fv4=fp; P4=[P1(:,1),P2(:,1),P3(:,1)];
fp4=[fp1(1),fp2(1),fp3(1)]; G4=G; fgi=fg;
I14=elform(area,fvd,fpd,fgd);
I12=T11+112+113+114;
if sfl

FEN=FEN+12;

TRIN=TRIN+4;
end
if trace, tracefun([P1,P2,P3,G1,G2,G3]); end
if abs(I2-I1)<err

vi=I2;
else

vi=quadrg3(f,V1,P1,G1,fvl,fpl,fgl,err,area,Ill,trace)+...

quadrg3(f,V2,P2,G2,fv2,fp2,fg2,err,area,I112,trace)+. ..

quadrg3(f,V3,P3,G3,fv3,fp3,fg3,err,area,I13,trace)+...

quadrg3(f,V4,P4,G4,fv4,fp4,fgl,err,area,lI14,trace);
end %if

function v=elform(area,fv,fp,fg)

v=area/60* (3*sum(£fv)+8*sum(fp) +27*fg) ;

function P=midpoints(V);
PC:,)=(V(:,2)+V(:,3))/2; P(:,2)=(V(:,1)+V(:,3))/2;
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P(:,3)=(V(:,1)+V(:,2))/2;

function tracefun(L)
%TRACEFUN - represents points where function is evaluated

plot(L(1,:),L(2,:),’.k’,’Markersize’,4);
3. Numerical examples

Consider the triangle 77 = {(z,y)/z > 0,y > 0,z + y < 1}, and the function
f:Th = R, f(z,y) = humps(z)humps(y), where

1 1

h = =0
umps(x) (z —0.3)% + 0.01 + (z —0.9)2+0.04

The graph of f is given in Figure 3 as surface and as contour. First, we approximate

&

~——

FIGURE 3. The graph of f, as surface (left) and as contour

the integral for a tolerance ¢ = 10~° using the adaptive quadrature based on (1.2)
and (2.1), respectively. The trace flag is set.
>> [vib,statb]l=mpcubatd2mb (Chumps2dv,V,le-5,1)
vib =
5.997039610414015e+002
statb =
nev: 57684
ntri: 25636
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>> [vib3,statb3]=mpcubatd3mb(Chumps2dv,V,le-5,1)
vib3 =

5.997039668483903e+002

statb3 =
nev: 30499
ntri: 10164

The figure 4 shows the points where the MATLAB functions evaluate the integrands.

Now, for a higher accuracy (10~?) and a timer included we got the following results

dex=2,e=10"°

dex=3, £=10"°

FIGURE 4. Evaluation points for the second order formula (left) and

for the third order formula, for function f, e = 1073

>> tic, [vib, statb]l=mpcubatd2mb(@humps2dv,V,1e-9); toc
Elapsed time is 43.444590 seconds.
>> tic, [vib3,statb3]=mpcubatd3mb (Chumps2dv,V,1e-9);toc
Elapsed time is 19.121086 seconds.
>> vib,statb
vib =
5.997039625857019e+002
statb =
nev: 2219736
ntri: 986548
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>> vib3,statb3
vib3 =
5.997039625817022e+002
statb3 =
nev: 640915
ntri: 213636

Thus, for this function the third degree formula is faster.

For functions that do not exhibit high oscillations and for modest accuracy
requirements, the second degree formula requires fewer function evaluation. Consider
the function f(z,y) = ysinz (implemented by MATLAB function fintegrv) to be

integrated on T;. For e = 10, one obtains:

>> tic, [vib,statb]=mpcubatd2mb(@fintegrv,V,le-4); toc
Elapsed time is 0.001425 seconds.
>> tic, [vib3,statb3]=mpcubatd3mb(@fintegrv,V,1le-4); toc
Elapsed time is 0.012022 seconds.
>> vib,statb
vib =

0.04030110314738
statb =

nev: 48

ntri: 20
>> vib3,statb3
vib3 =

0.04030317282902

statb3 =
nev: 67
ntri: 20

205



ILDIKO SOMOGYI AND RADU TRIMBITAS

References

(1]

[2]
3]

Barnhill, R.E., Gordon, W.J., and Thomas, D.H., The method of successive decomposition
for multiple integration, Research Rep. GMR-1281, General Motors, Warren, Mich., 1972.
Coman, Gh., Analiza numericd, Libris, Cluj, 1995.

Coman, Gh., Pop, I, Trimbitas, R., An adaptive cubature on triangle, Studia UBB,
Mathematica, vol. XLVII, No.4, pp. 27-36, 2002.

Coman, Gh., Stancu, D.D., Blaga, P., Analizd numericd si teoria aprozimarii, vol 11,
Presa Universitara Clujeana, Cluj-Napoca, 2002.

Cools, R., Laurie, D.P.; Pluym, L., Cubpack++: A C++ package for Authomatic Two-
dimensional Cubature, ACM TOMS, vol. 23, No. 1, 1997, pp. 1-15.

Laurie, D.P., Algorithm 584: CUBTRI: Automatic Cubature over a triangle, ACM
TOMS, vol. 8, No. 2, 1982, 210-218.

Rice, J., A metaalgorithm for adaptive quadrature, JACM, vol. 22, No. 1, 1975, 61-82.
Somogyi, I., Practical cubature formulas in triangles with error bounds, Seminar on Nu-
merical and Statistical Calculus, 2004, 131-137.

Stroud, A.H., Approzimate Calculation of Multiple Integrals, Englewood Cliffs, N.J.
Prentice-Hall, Inc. 1971.

[10] Uberhuber, Cr., Computer Numerik, Band II, Springer, 1995.

[11] Welfert, B., Numerical Analysis, Lecture Notes, University of Arizona.

206

BABE§-BoLyAl UNIVERSITY,
Facurry oF MATHEMATICS AND COMPUTER SCIENCE,
STR. KOGALNICEANU NR. 1, RO-400084 CLUJ-NAPOCA, ROMANIA

E-mail address: tradu@math.ubbcluj.ro



