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NUMERICAL SOLUTIONS OF LOTKA-VOLTERRA SYSTEM
WITH DELAY BY SPLINE FUNCTIONS OF EVEN DEGREE

DIANA OTROCOL

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. This paper presents a numerical method for the approximate
solution of a Lotka-Volterra system with delay. This method is essentially
based on the natural spline functions of even degree introduced by using

the derivative-interpolating conditions on simple knots.

1. Introduction

In recent years many papers were devoted to the problem of approximate
integration of system of differential equation by spline functions. The theory of spline
functions presents a special interest and advantage in obtaining numerical solutions
of differential equations.

The splines functions of even degree are defined in a similar manner with
that for odd degree spline functions, but using the derivative-interpolating condi-
tions. These spline functions preserve all the remarkable extremal and convergence
properties of the odd degree splines, and are very suitable for the numerical solutions
of the differential equation problems, especially for the delay differential equations
with initial conditions.

In this paper we consider a spline approximation method for the numerical
solution of a Lotka-Volterra system with delay. The purpose of the present study is to
extend the results of [1], [2], [3], [5] from the delay differential equations to the delay
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differential system. In the same manner we shall develop some theory and algorithms

for the numerical solutions of a class of delay Lotka-Volterra system.

2. Basic definitions and properties of even degree splines

Let A,, be the following partition of the real axis
Ap:—oo=tg<a=1t < ..<tp, =b<tpy1 =+

and let m,n be two given natural numbers, satisfying the conditionsn > 1, m < n+1.

One denotes by I} the following subintervals

Iy o= [tg,tesa [, k= 1,n, Iy :=lto, ta].

Definition 1. [3] For the couple (m,A;) a function s : R — R is called a natural
spline function of even degree 2m if the following conditions are satisfied:

195 € C*™ (R,

20 5 |1, € Pom, k =T1,m,

3% 5|1,€ Pm, 5|1, € P,

where Py, represents the set of algebraic polynomials of degree < k.

We denote by Sa,,(Ay) the linear space of natural polynomial splines of even
degree 2m with the simple knots #1, ..., t,.

We now show that Sap,(A,y,) is a finite dimensional linear space of functions

and we give a basis of it.

Theorem 1. [3] Any element s € Sa,(A) has the following representation
s(t) = At + > ap(t — )3,
i=0 k=1

where the real coefficients (A;)§ are arbitrary, and the coefficients (ay,)} satisfy the
conditions

n .

> apty, =0,i=0,m—1L

k=1

Remark 1. [3] If n+ 1 =m, thena, =0, k = 1,n.
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NUMERICAL SOLUTIONS OF LOTKA-VOLTERRA SYSTEM

Theorem 2. [3] Suppose that n+ 1> m, and let f : [t1,t,] = R be a given function
such that f'(ty) =y}, k =1,n, and f(t1) = y1, where y,, k =1,n, and y1 are given
real numbers. Then there exists a unique spline function sy € Sam(Ay), such that the

following derivative-interpolating conditions

hold.

Corollary 1. [3] There exists a unique set of n + 1 fundamental natural polynomial

spline functions Sy, € Som(An), k= 1,71, and so € Sz (A,) satisfying the conditions:

SO(tl) = ]-7 Sé(tk) = 07 k= 1;”;
Sk(tl) = 0, S]’@(tz) = 6ik, i,k = l,n.

It is clear that the functions {sg, Sk, k = 1,n}, form a basis of the linear

space Sapm(Ay), and for sy we obtain the representation
n
sp(t) = so(t) f(t) + > Sk(t)f (tr).
k=1
But because s¢(t) = 1, it follows that

sp(t) = F(t) + 3 Sk f' (1),
k=1

Let us introduce the following sets of functions

Wt (A,) == {g: [a,b] = R | g!™abs.cont.on I} and g(™t1) € Ly[a,b]},
Wt a,b) == {g : [a,b] = R | "™ abs.cont.on [a,d] and g+ € Ly[a,b]},
W (AR) = {g € W (An) | ¢/ (t) = f'(t), k =T1,n},

2

3

W (A) = {g € W (A) | g(to) = f(to)}.
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Theorem 3. [3] (Minimal norm property). If s € Som(A,) NW™(A,,), then
2’f

Hs(m“)H < Hg(m“)H , Vg e W HH(A,),
2 2 2,f

holds, ||-||, being the usual Lo-norm.

For any function f € Wi (A,), we have the following corollaries.

2 2
Corollary 2. [3] ||f(m+1)||§ = Hs;m'i'l) ‘ + Hf(m“) - sgcmﬂ)H :
2 2
(m+1) 1
Corollary 3. [3] Hsf HQ < ||f(m+ )”2_
Corollary 4. [3] Hf(m'i'l) — sgchrl)H < ||f(m+1)||2.
2
Remark 2. [3] If 5 := s; + pp, where py, € Ppy, it follows ||§(m"'1)||2 < ||f(m+1)||2.
Theorem 4. [3] (Best approzimation property). If f € Wit (A,) and s; €
Sam(Ay,) is the derivative-interpolating spline function of even degree, then, for any

s € Som(Ay,) the relation

S(m+1) _ f(erl) < S(erl) _ f(erl)
f 2 2

holds.
Remark 3. [3] If sy — s € Py, then

Hs;mm _ f<m+1>H

- Hs<m+1> _ f<m+1>H '
2 2

3. The numerical solutions of Lotka-Volterra system with delay by spline

functions of even degree

Let us consider the following delay differential system with a constant delay
w>0
d U
% = Uty (@), (1), 5 (t—w),y’(t—w), a<t<bu=12 (3.1
with initial conditions

yu(t) = p¥(t), t € [a —w,a], u=1,2 (3.2)

and we suppose that f* : D C R* — R, satisfies all the conditions assuring the
existence and uniqueness of the solutions y : [a,b] — R of the problem (3.1)+(3.2).
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We propose an algorithm to approximate the solutions y* of the problem
(3.1)+(3.2) by spline functions of even degree s¥ € S, (A,), where A, is a partition
of [a,b] and m,n are two integers satisfying the conditions n > 1 and m < n + 1.

For t € [a,a + w], the problem (3.1)+(3.2) reduces to the following usual
initial value problems:

dy™

ﬁ = f“(t,yl(t),y2(t),yl(t _w)7y2(t_w))7 a<lt<a+tw

yu(t) = ¢"(a) =91, u=1,2
Theorem 5. If y* are the exact solutions of the problem (3.1)+(3.2), then, there

exists some unique spline functions syn € Sam(Ay) such that:

syu(t1) = y"(t1) = 9" (1),

dSyu
= = =1 =1,2
W (1) = W), k=T, u=1,

(3.3)

The assertion of this theorem is a direct consequence of Theorem 2 by sub-

stituting ¢; by a and f by y*.

Denoting yi := y*(tx), Uy = y*(tx —w), k= 1,n, u= 1,2, we have

syu(t1) =yt

dsu 1 —
dz (tk) = fu(tkayllcayl%;yllmy]%)a k= 1;”; u = 1a2

Corollary 5. If the functions {so, S,k = 1,n} are the fundamental spline functions

in Som(Ay), then we can write
sy (t) = ¢"(a) + Z Sk(t)fu(tk;ylleayzvy}wyi)v u=1,2, (3.4)
k=1

where y,i, y,%, k = 2,n, are unknown, and

_u YUty —w), ifty <a+w, are known,

YUty —w), if tr > a+w, are unknown.
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We shall call the function s, (t), the approximating solution of the problem

(3.1)+(3.2) and it can be written as follows

sy (t)

+

¢"(a)+
S Sk Of vk -0 Pt -w) (35
tr<atw

> Sk (ks Yk Vi Vi T2)-
tr>atw

+

For simplicity, in writing (3.5), let us use the following index sets:
Ji={jeN|t;>a+w,Ti:t; —w=1t}=:{j1,J2, - Jq}
Jo={ieN|TjeJi: t;j—w=1t}=:{ir,i2,...,1q},
I'={jeN|t;>a+w, fi:tj—w=t} =:{di,ds, ..., dp}.

Thus, we can write (3.5) in the form

Sy (t)

“(
Z+ Sk f b, yps v @' (b — w), @ (tr — w))

+

¢"(a)+
tk a

A

+
M‘Q\

Sii () F (s> Y, Y5 Ui Vi)

=~
Il
—

+
M=

Sdk (t)fu(tdk ’ yék ’ yzk ) ybk ) y?lk):

=~
Il

1

where the values y¥, k =2,n, and g}, k =1,p, u = 1,2 are unknown.

Before giving an algorithm to determine these values, we shall give the fol-
lowing estimation error and convergence theorem.
Theorem 6. [3]If y* € Wy '[a,b], u = 1,2 are the evact solutions of the prob-
lem (8.1)+(3.2) and sy« is the spline approzimating solution for y*, the following

estimations hold:

for k=1,2,....m, where ||Ap|| := max{t; —t; 1}, u =1,2.

1=2,n

() m—k+L
Syu

u(k) < vm(m —1)(m —2)..kA,

y u(m+1) |

Y

’
2

Corollary 6. [3]If y* € W, ![a,b], we have

1

ly* = s2lloe < (6= a)yim(m = |y 0| A" u=1,2,

Corollary 7. [3] lim ‘
Y 13 [[An]—0

yu(k) — S?(IIZ)H = 0’ k= ]_,m, u = 1,2

o0
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4. Effective development of the algorithm
For any ¢ € [a, b], we suppose that y*(t) & syu(t), u=1,2.
If we denote, as usual, e"(t) := y"(t) — sy (t), t € [a, ],
we have

yu(m+1) H

le"(t)| < v/m(m —1)! ||An||m—%

’
2

or

(B = O Anl™ %), Vt € [a,b].

If we denote

“(ti) = syu(ti)i=T,m
= y"(t; — w) — syu (t; —w) i=1,n,

Wi = syu(t;), e

Wy = sy (t; —w), €

I
)
S
—
o~
G,
N
I
v <

g
|

then we have yj' = w}* + e}, y;' = Wy + €}, where

oY=yt + Z Sk(ts — w) f* (ks Yk U3 Uk, Ui)s 0 = L, u=1,2.
k=1

In what follows, we suppose that in (3.1)+(3.2) the functions
f:DCR - R(DCla,b] xR,

afu(taulau2au37u4) 8f“(t,u1,uQ,U3,U4)

8u1 ’ 8uQ ’
Of"(t,ur,ua, uz, ug) Of"(t,u1,us, u3, us)
a’LL3 ’ 8U4

are continuous. Thus,
F (e, Y, Y2, 6 1) = f* (e, wi + e, wi + €3, ), + ey, W5 + €3
—1 —2 1afu(tkaf/£af/%a7711ﬂ77/2¢)

= t
Tty w, wi, Wy, W) + e, o,
te 8f (tkagkagkankvnk) +_18fu(tk,f/£af/%a77/1ga771%)
k €k
Ouy Ous
+€]2cafu(tkafllca£]%anllg7nl2c)
aU4
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where
min(wj, wit + €ft) < & < max(wj', wil + ef),
min(wy,, wi +€;) < np < max(wy,wy +€;), u=1,2.

We can write the system (4.1) in the form

n
wi =yt + Y Skt f* (b wi, w}, T, W) + B i =Ton, u=1,2
k=1

n
W? = y% + Zsk(ti - w)fu(tkawllmw?camllcamli) +E?a i=1,n, u=1,2

k=1
where
- A" (b, & & M ) | N OF* (tk, &k Ers Mo 1)
EBY = S (t: 1 ySky Sk ks Ik Sy (#; _9 5 Sk Sk s M
i ; k(ti)ey, s +I; w(ti)er ™
n n
af“ tk’£1’£2’ 1’ i — afu tk7€17€27 11 2
+ZSk(ti)ei ( Su i s i) _'_Zsk(ti)ei ( 5u i o> i)
k=1 3 =1 4
1
= O([|An]"2),
n
—u 0 ut’ 1’ 2’ 1’ 2
E; =) Skt —we} (s Er Eics ﬂk)+
k=1 Ouy
n OFU(t, €L €2 pl 2
+Z‘Sk(ti_w)€i f (kafkﬂfkankvnk)+
k=1 Az
n u 1 ¢2 1 2
t
+Zsk(ti_w)€iaf (kagkagkankank)+
k=1 dus
n 8fu(tk 61 62 ,,71 772)
St— =2 ySEkIySEky ks Ik —
+; k( ' w)ek Ouy
= O(| A" %), i =T, u=12,
supposing that
3f“(t,u1,u2,u3,u4) <M 8fu(t,U1,U2,’u,3,U,4) <M
3u1 - B au2 = 2,
afu(tﬂulau27u37u4) < M 8f“(t,u1,u2,u3,u4) <M
8U3 - 3 8U4 = 4,

on D. Obviously, E* — 0 and E; — 0 for [|A,]| = 0, u=1,2.
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Now, we have to solve the following nonlinear system:

n
wi =yt + Sk(ti)f“(tk,w}c,w%,@k,wi), 1=1,n,

k=1 (43)
n .
WY =yt Y Skt —w)f (b w) wd, 0L w,), i =T
k=1
Let us denote:
w' = (wy, ..., wy), W= (WY, ..., W), W = (w",0"),

n
sz(waw) = yil + ZSk(ti)fu(tkawllmwl%amllcami)v i=1,n,
k=1

n
F?(w,ﬁ) = y% + Zsk(ti - w)fu(tkawllcvw?cvwllcami)v i =1,n,
k=1

HY(WY) == HY(w", T")
= (H(w", @Y, ..., H (w", @), T (w", @), ..., T

and

OH™ (w" T") HM(w" @)  OHY (w", ") OH (w" T")

o
owy

OH (w" W)

u
ow

OHM (w" W)

owy oW

OH, (w* w™)

n

OHy (w* W)

Av = dwy owd owy owd
OH (w" ,w™) OH (w™ ,w™) AHT (w" ,w") OH (w" ,w")
owy owy owy owy
OH . (w™ ,w") OH . (w™ ,w") OH. (w™,w") OH, (w",w")
dwy owd owy owd
Shortly, we write the system (4.3) by
W = HY(W") (4.4)

In order to investigate the solvability of the nonlinear system (4.4) we shall use a

classical theorem.
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Theorem 7. [6] Let Q C R2"™2 be a bounded domain and let H" :Q0 — Q be a vector
function defined by

(Hf(wu’mu)’""Hu(wu’wu)7ﬁl (wu7wu)7“'7H (wu7wu))
= H"(W").
a u
d 2
oW’
point WY of HY, i.e. W** = HY(W™*), which can be found by iterations. W** =
lim W) wuk) = guwuek-0) k= 1,2,.. WO ¢ Q (arbitrary). If in

n—oo

addition ||A|| < L < 1, for any iteration W"*) | the following estimation holds:

If the functions H", an are continuous in ), then there exists in Q) a fized

Lk

u _ u(k)H<
e < 7

e

Taking in consideration the expression of HY, the matrix A" is A% = SFY,

where
Si(t) -0 Sa(t) Si(ty) - Salh)
S = S (tn) T Sn(tn) Sy (tn) T Sn(tn)
| St —w) o Sa(ti—w) Si(ti—w) - Sa(t—w)
Si(tp —w) -+ Sp(th —w) Si(th —w) -+ Sp(th —w)

and F' is the diagonal matrix with the following elements:

afu(tkawllcawzawkaw%) afu(tkawllcaw%amk’w%)
ow} ’ owy

Jk=1,n

S
I
=
N

Theorem 8. Suppose that there exists the constants M, N such that ({.2) holds and
|fu(t,U1,U2,U3,U4)| S NUa \V/(t,U1,U2,U3,U4) S Da u = 152

If M, < ||S|| ", then the system (4.3) has a solution which can be found by iterations.

176



NUMERICAL SOLUTIONS OF LOTKA-VOLTERRA SYSTEM
5. Numerical example

Example 1. Consider the following Lotka-Volterra delay differential system
dy?

o =y [yl(t— 1) +92(t—1)+1—¢t! —e2t—2] ;
dyQ at € [07 ]7
E — y2 [yQ(t _ 1) +92— 62t72:|

with initial conditions
y'(t) = ' (t) = €', t € [-1,0]
Y2 (t) = p*(t) = e*, t € [-1,0]

and the corresponding exact solutions
(y' (1), 9% (1) = (', e).

In the below table are given the actual errors for the considered examples.

The table list

max{|wf—y“(ti)|, i = lvn; |wg_yu(tj _w)|a jEI;
|5y (@ + 0.18) — y(a + 0.1d)], i = 1,10(b— a)},

for m = 1,2, 3 and the interval [a, ] is [0, 2].

[0, 0,2]

n\m 1 2 3
6 65.6521 5.4291 6.4198
9 12.2874 | 0.75975 0.25095
11 7.0645 0.39634 | 0.072303

Fora=0,b=2 w=1 m =1, n =6 we obtain r = 3 (the number of
the nodes at the left of a + w), p = 3, ¢ = 0. The approximating solution 5% and
the exact solution y* , u = 1,2, in this case,are plotted in FIGURE 1 and FIGURE
2. Fora=0,b=2 w=1 m=2,n=9weobtainr =5 p=0, g =4.
The approximating solution 5% and the exact solution y* , u = 1,2, in this case, are
plotted in FIGURE 3 and FIGURE 4.
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0 0.5 1 15 2

FIGURE 1. Comparison between the approximation solution 3' and

the exact solution y! in the first case.
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FIGURE 2. Comparison between the approximation solution 52 and

the exact solution y? in the first case.
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sl /|
-—-y1

FIGURE 3. Comparison between the approximation solution 3' and

the exact solution y' in the second case.

60

FIGURE 4. Comparison between the approximation solution 52 and

the exact solution y? in the second case.
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