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LAPLACIAN DECOMPOSITION METHOD
FOR INVERSE STOKES PROBLEMS
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Abstract. This paper considers an inverse boundary value problem as-
sociated to the Stokes equations which govern the motion of slow viscous
incompressible fluid flows. The solution of these equations is analyzed
using a novel technique based on a Laplacian decomposition instead of
the more traditional approaches based on the biharmonic streamfunction
formulation or the velocity-pressure formulation. The determination of
the under-specified boundary values of the normal fluid velocity is made
possible by utilizing within the analysis additional pressure measurements
which are available from elsewhere on the boundary. Results both on the
boundary and inside the solution domain are presented and discussed for a
simple benchmark test example and an application in a square geometry in
order to illustrate that the Laplacian decomposition in combination with
BEM provides an efficient technique, in terms of accuracy, convergence

and stability to investigate numerically an inverse Stokes flow.

1. Introduction

Due to the mathematical complexity of the Navier-Stokes equations, it is
well known that the general solution of these equations is not possible. Therefore
in order to construct tractable mathematical models of the fluid flow systems, it is
necessary to resort to a number of simplifications. One of these simplifications occurs

when viscous forces are of a higher-order in magnitude as compared to the inertial
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forces. Consequently, one may drop the inertia terms from the steady Navier-Stokes

equations to obtain:

Wg=vp (1)
where g is the fluid velocity vector, P the pressure, p the density and p the fluid
viscosity. Equation (1) is called the steady Stokes equation and may be regarded as
the fundamental equation for the very slow motion of viscous fluids, known as creeping
flows or Stokes flows. Non-dimensionalising equation (1), using typical velocity and

length scales Ug and L, respectively, and defining ¥ = Lr, 7 = 70& and P = “LL_UP,

results in

VZg=V P. (2)

Since the fluid flow is assumed to be incompressible, we also have the continuity

equation
V-q=0. (3)

If exact data for v and v are specified at all the points on the boundary 02
then the velocity and the pressure can be determined everywhere inside the solution
domain 2. However, in many practical situations it is not always possible to specify
both components of the velocity at all the points on the boundary. Consequently,
a part of the boundary remains under-specified and in order to compensate for this
under-specification extra information is used on another part of the boundary, which
gives rise to a portion of the boundary being over-specified. Such problems are called
inverse problems and as Hadamard [4] pointed out their solution may not depend
continuously on the input data.

In practical problems the additional information has to come from measure-
ments and frequently it is easier to measure the pressure, in addition to the fluid
velocity, rather than the vorticity. Therefore, in this paper we introduce extra infor-
mation on pressure and, clearly, in this case it is more appropriate to work with the
Stokes equations rather than the biharmonic equation. Nevertheless, the initial step
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in obtaining a numerical solution of such an inverse and ill-posed problem is to develop
a method of solution for the corresponding direct problem. The velocity-pressure for-
mulation for direct Stokes problems, based on the Laplacian decomposition and BEM,
has been described elsewhere, for example, in Curteanu et al. [3].

In the underlying inverse Stokes problem, we investigate the numerical solu-

tion in a domain  enclosed by a non-smooth boundary 9012, such that
a0 =TUT, (4)

where T'g is the under-specified boundary section and T' = 92 — T'g. Both the normal
and the tangential components of the fluid velocity, namely u and v are specified on
the section of the boundary I', whilst only the tangential component is given on .
However, this under-specification of the boundary conditions on I'y is compensated by
the additional pressure measurements over I'* C I'. This problem has been previously
solved by Zeb et al. [8] where they used the BEM on the full Stokes equations.
Furthermore, the system of algebraic equations that results from an applica-
tion of the BEM, in conjunction with the boundary conditions, is solved using the
zeroth-order Tikhonov regularization method. The numerical solutions are obtained
for the unspecified values of both the normal component of the fluid velocity and of
the boundary pressure. Due to the ill-posed nature of the inverse Stokes problems
described above, it is important to consider the stability of the numerical solution.
Therefore we investigate the effect of noise on the numerical solution for the unknown
values of the normal fluid velocity and the boundary pressure by adding a random
error to the input data. Perturbation in the tangential component has not been con-
sidered, because, in general, this information is physically available from the no-slip

condition on the solid boundary and is unlikely to contain any noise.

2. Mathematical formulation

For what follows, it is not restrictive to assume two-dimensional flows in a
bounded domain  C R?. Differentiating the x and y components of equation (2)
with respect to z and y, respectively, then adding together and using the continuity
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equation, results in
V?P =0. (5)

In order to simplify equations (2) and (3), the following formulation for the velocity

q = (u,v) components are introduced:
x
u = f+ §P’ (6)

v

9+3P. (7)

From (2) and (5) this results in f and g being solutions of the Laplace equation,

namely
Vif =0, (8)
Vig = 0. 9)

The above substitutions have reduced the Stokes problem to the solution of three
Laplace’s equations, (5), (8) and (9), interconnected through some boundary condi-
tions involving also the continuity equation (3).

It is well known that the harmonic function P in equations (6) and (7) is
unique up to an arbitrary constant, a. Moreover, if fy, go and Fy are harmonic
functions subject to the prescribed boundary conditions on v and v, then so are

— 4%, go — % and Py + a. However, this non-uniqueness can be easily avoided by
prescribing the value of the pressure at one arbitrary spatial point and this holds
for the inverse problem considered - the pressure being prescribed on a part of the

boundary.

BEM - Integral equation

In this paper, the development of the BEM for discretising the Laplace equation is
the classical approach, see Brebbia et al. [1], and it is based on using the fundamental
solution for the Laplace equation and Green’s identities. Thus, for example, equation

V2 f = 0 may be recast as follows:

n(X)f(X) = /F{f’(Y)G(X,Y) - f(YV)G'(X,Y)}dl'y (10)
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where

(i) X € QUT and Y € 9Q and 012 is the boundary of the domain €,
(ii) dI'y denotes the differential increment of Q2 at Y,
(iii) n(X) =11if X € Q, and n(X) = the internal angle between the tangents
to 9N on either side of X divided by 27 if X € 09,
(iv) G is the fundamental solution for the Laplace equation which in two-

dimensions is given by
G(X,Y)= —iln|X -Y] (11)
T o

(v) G, f'" are the outward normal derivatives of G and f, respectively.

We note that, as with the classical constant BEM, nodal points are situated
only at the segment mid-points and therefore f’ has precisely one value at each of
these nodal points. However, with the linear BEM formulations, nodes are situated
at segment end-points and therefore, if the domain has corners, at those points f' has
two components, one related to each of the sides adjacent to the corner. Therefore, in
order to deal with corners and singularities, discontinuous linear boundary elements
are introduced in this section.

In practice, the integral equation (10) can rarely be solved analytically and
thus some form of numerical approximation is necessary. Based on the BEM, we sub-
divide the boundary 0f) into a series of N elements 0Q;, j = 1, N, and approximate
the functions f and f’ at the collocation points of each boundary element I';. In the
discontinuous linear elements method (DLBEM) it is assumed that the variables in
the integral equation (10) have a linear evolution along the elements. These boundary
elements are segments of a straight line and the linear evolution is expressed through
the values of the functions at two internal points given by

X =(1-7)X;01 +7X; (12)

T

X, =7X; 1+ (1-7)X; (13)
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where 7 € (0, %) Correspondingly, the boundary integral equation (10) becomes
al 1—-71
X)f(X) = ! " O(X) — E(X
n(X)f(X) j§:1f2]71 [1_270]( )= T3 Bi )}

N
+ gy [ B - 5 00)]
=1

N 1—7 1
- ;;‘2];1 [EDJ‘(X) - EF]'(X)}
N 1 T
- X |5 F 0 - 1000 (1)

where Cj, D;, E; and F; have the same meaning as in Mera et al. [6] and may be

evaluated analytically. In the DLBEM, the discretised boundary integral equation

(14) is applied on the boundary at each of the points x4 xd

7,1 7,29

j=1,N, leading to

a system of 2N equations

2N

> (4ijfj = Bijf;=0) for i=172N (15)
j=1
where the matrices A;; and B;; are given by
1-7 .
Ai,2j—1 1— 27_Cj(§i) — EE] (gl) fOI“ 1= 1,2N, J = l,N
1 T .
Az 1o, Li(z) —7—5-Cilz;) for i=12N, j=1LN
1—7 1 . . .
Bigj T Dia) - 5 Filz;) for i=12N, j=1N i#2j-1
1 T . .
B;o; 1= 27_Fj(gi) — EDj(gi) for i=1,2N, j=1,N i#2j

and the collocation points z;, ¢ = 1,2N are given by

_ yi _yvi TN
Zoi 1 =X71 2o =X7, i=1,

=
—~
—
(=2}
=

Similar equations are obtained for the harmonic functions g and P.
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Now the equations (8), (9) and (5) reduce to a system of 6N equations in

12N unknowns, i.e.

Af'—Bf =0
Ag’ — Bg=0 (a7
AP’ —BP =0

In the inverse formulation of the Stokes problem considered in this paper, both com-
ponents of the fluid velocity, v and v, are specified on the section of the boundary
I' = 0 — T'g, whilst only the tangential component, e.g. u is given on I'g. However,
this under-specification of the boundary conditions on I'g is compensated by the ad-
ditional pressure measurements over I'*. Clearly, if the velocity vector is known on
0N then u' and v’ can be obtained analytically by using equations g—z = ﬂ:% = ¢g—z
and g—z = ﬂ:g—z = :F%, respectively. Solving the direct problem with v and v known
on 91, we obtain the pressure P everywhere and, in particular, over I'*. This numer-
ically calculated pressure, denoted by P(™ is used in the inverse problem (17) and
(18).

Suppose that the number of boundary elements N on 0f) is such that Ny
belongs to I'g and N* to I'*. Dividing the boundary such that 9Q = 'y UToUT'3UTy,

where Ty = {(z,9)] = 5 < 2 < 59 = —5h o = {(@y)le = 5.-3 <y < 3},
Ty = {(z,9)| = § <2 < 5,y =35} Ta={(x,9)|z = =3, -3 <y < 3}, the problem

can be described mathematically by (17) and the following boundary conditions:

f+iP=qum_2zp® on 00
g+iP=vM - %P(”) onT
f’+V1P+%P,:’U/(n)—I/lP(n) on FQUF4
g’ + v P + %P’ = ’U’(n) — I/QP(n) onI'yUTls

where the N* vector P is the given pressure on the over-specified part of the

a(x /2 a(y/2 . a(; ;
boundary I'* CT and £, 4, vy = (gr/t )y = (gT/L ) are the matrices 8ij =L, 5,24,

0311 (j) and 6ijy2(j), respectively .
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In a generic form, the system of equations (17) and (18) can be rewritten as

Az =b (19)

where A is a known (12N — 2Np) x (12N — 2N*) matrix which includes the matrices
A and B, x is a vector of 12N — 2N* unknowns which includes the 2N vectors
floa, f'loa, glaa, g'lsa and P’|sq, and the 2N — 2N* vector Plapq_r+ and b is

a vector of 12N — 2Ny knowns which includes u|sq, v|r, P|r+ and the derivatives

of velocity. Then, using the calculated boundary data, interior solutions for the
harmonic functions and the velocity can be determined explicitly using the integral

equation, i.e. equation (10) for f, see Brebbia et al. [1].

Regularization method

The Tikhonov regularization method is an efficient method for solving inverse and ill-
posed problems which arise in science and engineering. It modifies the least-squares
approach and finds an approximate numerical solution which, in the case of the zero-th

order regularization procedure, is given by, see Tikhonov and Arsenin [7],

x = (A"A 4+ \I)"'AD (20)

where I is the identity matrix, the superscript ! denotes the transpose of a matrix and
A is the regularization parameter, which controls the degree of smoothing applied to
the solution and whose choice may be based on the L-curve method, see Hansen [5].
For the zero-th order regularization procedure we plot on a log-log scale the variation
of ||z|| against the fitness measure, namely the residual norm ||Ax , — b]|| for a wide
range of values of A > 0. In many applications this graph results in a L-shaped curve
and the choice of the optimal regularization parameter A > 0 is based on selecting
approximately the corner of this L-curve.
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3. Numerical results
We investigate the solution of Stokes problem given by equations (2) and (3)
in a simple two-dimensional non-smooth geometry, such as the square

1 11 1
Q:{(m,y)|—§<x<§,—§<y<§}.

In order to investigate the convergence and the stability of the solution we consider
first the following test example, namely the analytical expressions for the three har-

monic functions f, g and P are given by:

f(an) — _1.3/6+y2/2+1;y+:1:y2/2—1‘2/2 (21)
g = _42/2— 3a%y/2 +22/2+ 42 — 2y/2 (22)
Plam = 224, (23)

with the corresponding fluid velocity given by:

w = 2334 y%/2 +ay (24)

ol = /2 — Py 4 2?2 (25)

For presenting the numerical results, we choose I'* = I's. In order to study the effects
of various locations for the under-specified boundary region we choose I'y = I'y and
'y =T3. If 'y =TI and 'y = 'y are to be chosen then the velocity v has to be
specified on I'y instead of u, since on this parts of the boundary v is the tangential
component.

Whilst in the direct Stokes problem we observed that the difference between
the analytical solution and the numerical results for P using N = 80 was less than
1%, in the inverse problem, we found N = 40 was sufficiently large for the numerical
solution to agree graphically with the corresponding numerical solution from the direct
problem.

Figure 1(a) shows the numerical solution for the unspecified values of the
normal component of the fluid velocity v over I'y = I'; for A = 10~"', together with
its analytical value specified in the direct problem. From this figure, it is observed
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that the agreement between the numerical solution and the one given in equation (25),
which is specified analytically over I'y in the direct problem, is excellent. In Figure
1(b), we present the numerical solution for the boundary pressure P over 90 — I'™*
and the boundary pressure obtained from the direct problem. It can be seen in this
figure that the numerical solution generated by the inverse problem agrees very well

with the corresponding numerical solution obtained from the direct problem.

02+ 08+
0.15 064

01+
0.4+

005
02+

v 0.0 J2)

0.0

-0.05
-0.2-]

01
-0.15] 044

0.2 T T T T 1 06 T T T T 1
00 02 04 06 08 10 00 02 04 06 08 10

f (a) f (b)
FIGURE 1. The numerical solution (:--) for (a) the normal component
of the fluid velocity v|r,, together with the values of v analytically
specified over 91, and (b) the boundary pressure P|sq_r~, together
with the corresponding numerical solution for P obtained in the di-
rect problem when A = 10~ using the BEM with 40 discontinuous

linear boundary elements.

For various locations of the over-specified boundary region, i.e. I'* = T3
or I'" = T'y, we observed that the numerical results are similar with those obtained
for I'* = I';. Without presenting the results graphically, we mention that when a
different location of the under-specified boundary is chosen, namely I'¢ = I's the
agreement of the numerical results was found to be equivalent to that observed in
Figure 1. Moreover, when we double or more the over-specified part of the boundary,
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ie. IT*=ToUT3or I'* =T5UI'3 UTy, then an even better accuracy is obtained.

Effect of noise

As mentioned in the introduction, the inverse Stokes problem is ill-posed and the
system of equations (19) that results is ill-conditioned, and hence the solution may
not continuously depend upon the boundary data. Therefore the stability of the
regularized boundary element technique is investigated by adding small amounts of
noise into the input boundary data in order to simulate measurement errors which
are inherently present in the data set of any practical problem. Hence, we perturb the
boundary data i.e. data obtained from the direct problem, by adding random noisy

perturbations e to the boundary pressure P(™, namely
P=pP" ¢ (26)

The random error € is generated by using the NAG routine GO5DDF, see Brent [2],
and it represents a Gaussian random variable with mean zero and standard deviation

o, which is taken to be some percentage a of the maximum value of P("), i.e.

— p s L 9
o = max | | x 100 (27)

For a particular location of I'g, say I'g = I'y, Figure 2 shows the L-curve for the inverse
problem as a log-log plot of the solution norm ||z, ||, against the residual norm ||Ax , —

b||, for various amounts of noise @ = {3,6,10} introduced in P™|p. and for the

various values of the regularization parameter A taken from the range [107!%,1071].
We choose the optimal value of the regularization parameter A, corresponding to the
corner of the L-curve, as Agp: = O(107?) if o = 3 and A\,pr = O(1078) if a = {6, 10}.

It was found that the numerical solution for the retrieved normal velocity v|r,
and pressure P|sr_r=, obtained using both the exact and noisy data, for \,p; remains
stable and agrees with the analytical values and the values specified in the direct

problem, respectively, reasonably well according to the amount of noise introduced

in the input data for pressure P|p«. Therefore omitting the boundary results, we
present in Figure 3 (a) and (b) the lines of constant pressure and constant velocity
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Residual norm

FIGURE 2. The L-curve plot of the solution norm || ) || as a function
of the residual norm || Az — b || in the inverse Stokes for N = 40,
A = [10713,1071], when various levels of noise a = {3,6,10} are

added.

component inside the domain ) and it can be observed that as the amount of noise
decreases then the numerical solutions approximate better the solution obtained in
the direct problem (for P) or analytically (for v) whilst at the same time remaining

stable.

4. Application - driven cavity

Now we investigate an inverse problem in a square cavity filled with incom-
pressible viscous fluid and the top lid moving with a constant velocity of unity, for
which no analytical solution is available. Now, the tangential component of the fluid
velocity is specified on the whole boundary, while the normal component of the fluid
velocity v is unknown on e.g. the bottom side of the cavity, namely on I'g = I'; and
this under-specification of the boundary conditions is compensated for by the addi-
tional pressure measurements on another part of the boundary or over the remaining
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F1GURE 3. The lines of constant (a) pressure P, and (b) velocity

I

v, inside the cavity  obtained with N = 40 discontinuous linear

boundary elements when various levels of noise are introduced in

P|p«_r,, namely, (a) direct and (b) analytical solution (

O(eee), a=3(— — —),a=6(—-—-—- ), and a = 10(- - ).

), a=

part of the boundary. The boundary conditions for the problem are as follows:

ru:v’:O on Iy=T,
u=v=u =0 on Iy
 u=-1lv=2v =0 on I (28)
u=v=u =0 on Iy
{ P =pn on I
When random noise, @« = {3,6,10} is introduced in the pressure P|p-

the values of the regularization parameter A given by the L-curve plots, are
{10719,1079,107°} when I'* = 'y and {1078,1077,1077} when I'* = T, UT3 U T}y.
The boundary results were found accurate in comparison with the analytical or direct
values and convergent to the exact solutions when the amount of noise decreases.
Figure 4 shows the numerical results obtained for pressure inside the driven cavity

when different amount of noise are introduced in Pl for two different locations of

the over-specified part of the boundary. Also shown in this figure is the corresponding

101



A.E. CURTEANU, L. ELLIOTT, D.B. INGHAM AND D. LESNIC

solution obtained in the direct problem and it is observed that the errors between the
numerical solution of the problem (17) and (28) and the values obtained in the direct
problem (u and v specified on 92) are comparable with the amount of noise included
and the numerical solution approaches the exact solution with decreasing the amount
of noise. Moreover, it can bee seen that the larger is the length of the over-specified

part of the boundary, the better is the accuracy.

0.25+

a

<
o
o
<
>
6.30

-0.25

N’
665

F1GURE 4. The lines of constant pressure P inside the cavity 2
using the BEM with N = 40 discontinuous linear boundary ele-
ments when various levels of noise are introduced in (a) P|p«—r,
),a=0(eee),
a=3(- - —-),a=6(—-—-— ), and a = 10(- - -) for the driven

and (b) P|p«—r,ursur,, namely, direct solution (

cavity problem.

In order to visualise the overall flow pattern inside the domain 2 we present
in Figure 5 the velocity field at some selected interior points. The lengths of the
vectors and of the arrows are proportional to the magnitude of the fluid velocity.
Although not illustrated graphically, we wish to report that both the magnitude and
the direction of the fluid vectors were observed to be similar to those obtained when

solving both the direct and the inverse problem.
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Fi1GURE 5. The velocity vectors at selected points inside the driven
cavity obtained by solving the inverse problem with & = 0 for I'g = T’y

and I'* =T's.

It is important to note that for the driven cavity problem with singularities,
the solution is more sensitive to the location of the under-specified and over-specified
boundaries, becoming less accurate at some points, especially on the under-specified
boundary. Also these boundary errors propagate into the solution domain. However,

the accuracy of the results improves by increasing the over-specified boundary.

5. Conclusions

In this paper the Stokes equations, subject to under-specified boundary con-
ditions on the normal component of the fluid velocity v, but with additional pressure
measurements available on another part of the boundary, have been studied. A bound-
ary element discretisation has been applied to the resulting Laplace equations and the
Tikhonov regularization method has been used to solve the resulting ill-conditioned
system of linear algebraic equations. The technique has been validated for a typical
benchmark test example and in a situation where no analytical solution is available in
a square cavity. It has been shown that this regularized boundary element technique
retrieves an accurate and stable numerical solution, both on the boundary and inside
the solution domain, with respect to decreasing the amount of noise in the input
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boundary data. Moreover, the numerical solutions converge for a reasonable number

of boundary elements, about half the number of boundary elements used when solving

the corresponding direct problem.
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