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Abstract. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X. The main result of this Note is the following

converse of the Reduction Principle: if x0 ∈ X, h ∈ H \X and y0 ∈ Y is

the element of best approximation of both x0 and h, (x0 − h, x0 − y0) = 0

and codimXY = 1, then x0 is the element of best approximation of h in

X.

1. Introduction

Let H be an inner product space, with real inner product (·, ·) and the norm

‖h‖ =
√

(h, h), h ∈ H. For a subset M of H and h ∈ H, the distance of h to M is

defined by

d(x, M) = inf{‖h−m‖ : m ∈ M}.

The set M is called proximinal if for every h ∈ H there exists m0 ∈ M such

that

‖h−m0‖ = d(h, M).

The set

PM (h) := {m ∈ M : ‖h−m‖ = d(h, M)}, h ∈ H

is called the set of best approximation elements of h by elements in M , and the

application PM : H → 2M is called the metric projection of H on M .
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If cardPM (h) = 1 for every h ∈ H, then the set M is called a Chebyshevian

set in H ([2], p.35).

The existence and the uniqueness of best approximation elements are

treated in Chapter 3 of [2]: every complete convex set in an inner product space

is a Chebyshev set ([2], Th.3.4).

Two elements u, v ∈ H are called orthogonal if (u, v) = 0. The cosinus of

the angle between the u, v ∈ H \ {0} is defined by the formula

cos û, v =
(u, v)

‖u‖ · ‖v‖
.

Concerning the characterization of best approximation elements, the fol-

lowing result holds ([2], Th.4.9):

Let M be a subspace of H, h ∈ H and m0 ∈ M . Then m0 = PM (h) iff

(h−m0,m) = 0,

for all m ∈ M .

The geometric interpretation of this characterization result is that the element

h−PM (h) is orthogonal to each element of M . This is the reason why PM (h) is often

called the orthogonal projection of h on M .

The following result appears in [2], p.80 under the name ”the Reduction

Principle”:

Let K be a convex subset of the inner product space H and let M be any

Chebyshev subspace of H that contains K. Then

a) PK(PM (h)) = PK(h) = PM (PK(h)), h ∈ H;

b) d(h, K)2 = d(h, M)2 + d(PM (h),K)2,

for every h ∈ H.

Obviously, if K is a closed and convex subset of a complete subspace M of

the inner product space H, the properties a) and b) are also fulfilled (see Th.4.1 in

[2], and Th. 2.2.6 in [3]).
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2. Results

From now on, we consider the following particular case of the Reduction

Principle:

Theorem 1. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X. Then

a’) PY (h) = PY (PX(h)) = PX(PY (h)), h ∈ H;

b’) d(h, Y )2 = d(h, X)2 + d(PX(h), Y )2,

for every h ∈ H.

The proof of Theorem 1 is an immediate consequence of the characterization

result ([2], Th.4.9) and the Pythagorean Law (see e.g. [1], Th.1, p.70).

A generalization of Theorem 1 is:

Theorem 2. Let H be an inner product space and M1,M2, . . . ,Mn (n ≥ 2)

be subspaces of H with the following properties:

1) M1 is complete;

2) Mi, i = 2, 3, . . . , n are closed;

3) M1 ⊃ M2 ⊃ · · · ⊃ Mn.

a) For every h ∈ H the following equalities hold

PMn(h) = PMnPMn−1 . . . PM1(h) = PM1PM2 . . . PMn(h).

b) Let PM1(h) = m1, PMk
PMk−1(h) = mk, k = 2, 3, . . . , n.

The following equality holds:

d(h, Mn)2 = ‖h−m1‖2 +
h∑

k=2

‖mk −mk−1‖2.

Proof. For every y ∈ Mn we have

(h− PMnPMn−1 . . . PM1(P1), y)

= (h− PM1(h) + PM1(h)− PM2PM1(h) + . . .

+PMn−1PMn−2 . . . PM1(h)− PMnPMn−1 . . . PM1(h), y)
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= (h− PM1(h), y) +
n∑

k=2

(PMk−1 . . . PM1(h)− PMk
. . . PM1(h), y) = 0.

Using the characterization result ([2], Th.4.9) it follows that the element

PMnPMn−1 . . . PM1(h) is the orthogonal projection of h on Mn.

On the other hand, (h− PMn
(h), y) = 0 for every y ∈ Mn. Consequently

PMn(h) = PMnPMn−1 . . . PM1(h).

The equality PMn
(h) = PM1PM2 . . . PMn

(h) is immediate.

For b) observe that

d(h, Mn)2 = ‖mn −mn−1‖2 + ‖h−mn−1‖2

= ‖mn −mn−1‖2 + ‖mn−1 −mn−2‖2 + ‖h−mn−2‖2 = . . .

= ‖mn −mn−1‖2 + · · ·+ ‖m2 −m1‖2 + ‖h−m1‖2. �

Remark. Obviously, Theorem 1 is also valid if H is a Hilbert space and X, Y

are closed subspace of H, with Y ⊂ X. Also, Theorem 2 is valid if H is a Hilbert

space and M1 ⊃ M2 ⊃ · · · ⊃ Mn are closed subspaces of H.

A converse of the Reduction Principle is given in [3], Th.2.2.6:

Let H be an inner product space, X a complete subspace of H and K a closed

and convex subset of X. If x is the orthogonal projection of h 6∈ X on X, m is the

metric projection of h on K, then m is the metric projection of x on K.

A first converse of Theorem 1 is:

Theorem 3. Let H be an inner product space, X a complete subspace of

H, and Y a closed subspace of X. Let h ∈ H \ X and let PX(h) and PY (h) be the

orthogonal projections of h on X, respectively on Y . Then PY (h) is the orthogonal

projection of PX(h) on Y .

Proof. Indeed, by hypothesis it follows:

(h− PX(h), x) = 0, ∀ x ∈ X,

(h− PY (h), y) = 0, ∀ y ∈ Y,
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so that for every y ∈ Y one has:

(PX(h)− PY (h), y) = (h− PY (h)− h + PX(h), y)

= (h− PY (h), y)− (h− PX(h), y) = 0.

It follows that PY (h) is the orthogonal projection of PX(h) on Y . �

A second converse of Theorem 1 is:

Theorem 4. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X with codimXY = 1. Let x0 ∈ X \ Y and PY (x0) be the

orthogonal projection of x0 on Y . If h ∈ H \X, PY (h) = PY (x0) and (h − x0, x0 −

PY (x0)) = 0, then PY (h) = x0.

Proof. If the equality (h − x0, x) = 0 is fulfilled for every x ∈ X, then

PX(h) = x0, i.e. the conclusion of the theorem.

For every y ∈ Y we have

(h− x0, y) = (h− PY (x0)− (x0 − PY (x0)), y)

= (h− PY (x0), y)− (x0 − PY (x0), y) = 0.

It follows that h− x0 is orthogonal to Y .

Because, by hypothesis, (h−x0, x0−PY (x0)) = 0 it follows that (h−x0, u) = 0

for every u ∈ span{x0−PY (x0)}. Because x0−PY (x0) is orthogonal to Y and Y is a

closed subspace of the Hilbert space X, it follows that X = span{x0 − PY (x0)} ⊕ Y ,

i.e. X is the direct sum of the subspaces span{x0 − PY (x0)} and Y (see [2], Th.5.9

p.77 and [1], Th.4, p.65). Consequently (h− x0, x) = 0 for every x ∈ X. �

Remark. The condition codimXY = 1 in Theorem 4 is essential. Indeed,

let {e1, e2, e3} be the orthonormal basis of the Hilbert space R3, X = span{e1, e2},

Y = span{0} and h = 3e1 + e2 + 5e3. Let x0 = e1 + 2e2. Then PY (x0) = 0 and

PY (h) = 3e1 + e2, PY (h) = 0. The conditions PY (x0) = PY (h) and (h − x0, x0 −

PY (x0)) = (2e1−e2, e1 +2e2) = 0 are fulfilled, but PX(h) = 3e1 +e2 6= x0 = e1 +2e2.

Observe that codimXY = 2.
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Examples. 1◦ Let l2 = l2(N) be the space of all sequences x = (x(i))

of real numbers such that
∞∑

i=1

x2(i) < ∞. It is known that l2 is a Hilbert space

with respect to the inner product (x, y) =
∞∑

i=1

x(i)y(i) and the norm ‖x‖ =( ∞∑
i=1

x2(i)

)1/2

. Let {e1, e2, . . . } be the canonical basis of l2. The closed sub-

space X = span{e2n−1 | n = 1, 2, 3, . . . } is Chebyshevian in l2 and the orthogonal

projection of h = (h(1), h(2), . . . ) ∈ l2 is PX(h) =
∞∑

i=1

h(2i − 1)e2i−1, because

h− PX(h) =
∞∑

j=1

h(2j)e2j is orthogonal on X.

Let Y = span{e1, e3 + e5}. Then Y is a Chebyshevian subspace of l2 (and of

X) and

PY (h) = h(1)e1 +
1
2
[h(3) + h(5)](e3 + e5).

By Theorem 1 one obtains

PY (h) = PY PX(h) = PXPY (h).

By Theorem 3, the orthogonal projection of the element

x =
∞∑

n=1

h(2n− 1)e2n−1

on Y is

y0 = h(1)e1 +
1
2
[h(3) + h(5)](e3 + e5).

Indeed,

x− y0 =
1
2
[h(3)− h(5)]e3 +

1
2
[h(5)− h(3)]e5 +

∞∑
n=4

h(2n− 1)e2n−1

is orthogonal to Y , so y0 = PY (x).

2◦ Let l2(4) = span{e1, e2, e3, e4} where ei(j) = δij , i, j = 1, 2, 3, 4 (see 1◦),

and X = span{e1, e2, e3}, Y = span{e1, e2} and Z = span{e1}.

If x0 = 2e1 + e2 + 2e3, then PY (x0) = 2e1 + e2. For α, β ∈ R let h =

2e1 +e2 +αe3 +βe4. Then PY (h) = 2e1 +e2 and (h−x0, x0−PY (x0)) = 2(α−2) = 0

implies α = 2.

102



ON THE CONVERSES OF THE REDUCTION PRINCIPLE IN INNER PRODUCT SPACES

Every element h = 2e1 + e2 + 2e3 + βe4, β ∈ R has as orthogonal projection

on X

PX(h) = 2e1 + e2 + 2e3 = x0.

Observe that codimXY = 1.

Consider now the orthogonal projections on Z (codimXZ = 2). Then

PZ(x0) = 2e1, PZ(h) = 2e1 and (h − x0, x0 − PZ(x0)) = α + β − 3 = 0 implies

α + β = 3.

Choosing the element h = 2e1 + 2e2 + e3 + 2e4 one obtains

PX(h) = 2e1 + 2e2 + e3 6= 2e1 + e2 + 2e3 = x0.

3◦ Let L2[−1, 1] be the Hilbert space of all (Lebesgue) measurable real-

valued functions on [−1, 1] with the property that
∫ 1

−1

h2(t)dt < ∞. The in-

ner product on L2[−1, 1] is (x, y) =
∫ 1

−1

x(t)y(t)dt and the associated norm is

‖h‖ =
(∫ 1

−1

h2(t)dt

)1/2

. Consider also the Legendre polynomials (see [2])

p0(t) =
1√
2
, p1(t) =

√
6

2
t, p2(t) =

√
10
4

(3t2 − 1), p3(t) =
√

14
4

(5t3 − 3t)

and in general

pn(t) =
(−1)n

√
2n + 1

2n ·
√

2 · n!
· dn

dtn
[(1− t2)n],

for n ≥ 0.

The set {p0, p1, . . . , pn}, n ≥ 0 is orthonormal in L2[−1, 1]. Consider the

following subspaces of L2[−1, 1]:

X = span{p0, p1, p2, p3}, Y = span{p0, p1, p2} and

Z = span{p0, p1}.

For every h ∈ L2[−1, 1] one obtains ([2], Th.4.14)

PX(h) = (h, p0)p0 + (h, p1)p1 + (h, p2)p2 + (h, p3)p3,

PY (h) = (h, p0)p0 + (h, p1)p1 + (h, p2)p2 and
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PZ(h) = (h, p0)p0 + (h, p1)p1.

Obviously, Z ⊂ Y ⊂ X ⊂ L2[−1, 1] and PZ(h) = PZPY PX(h).

Let x0 = p0 + 2p1 + 2p2 + p3. If h ∈ L2[−1, 1] \X then PY (h) = PY (x0) iff

(h, p0) = 1, (h, p1) = 2 and (h, p2) = 2. The condition (x0−PY (x0), h−x0) = 0 implies

(p3, h − x0) = 0 and, consequently, (p3, h) = (p3, x0) = 1. It follows PX(h) = x0.

Observe that codimXY = 1.

Now PZ(x0) = p0 + 2p1 and PZ(h) = PZ(x0) implies (h, p0) = 1, (h, p1) = 2.

The condition (x0 − PZ(x0), h− x0) = 0 implies

(2p2 + p3, h− x0) = 2(p2, h) + (p3, h)− 5 = 0.

Let h1 = p0 + 2p1 + p2 + 3p3 + p4 and h2 = p0 + 2p1 +
1
2
p2 + 4p3 + p4.

Then PZ(hi) = PZ(x0), i = 1, 2 and (x0 − PZ(x0), hi − x0) = 0, i = 1, 2, but

PX(h1) 6= PX(h2) 6= x0. Observe that codimXZ = 2.

References

[1] Cheney, W., Analysis for Applied Mathematics, Springer-Verlag, New York-Berlin-

Heidelberg, 2001.

[2] Deutsch, F., Best Approximation in Inner-Product Space, Springer-Verlag, New York-

Berlin-Heidelberg, 2001.

[3] Laurent, P.J., Approximation et Optimisation, Herman, Paris, 1972.

”T. Popoviciu” Institute of Numerical Analysis, O.P.1, C.P.68,

Cluj-Napoca, Romania

E-mail address: cmustata@ictp.acad.ro

104


