PERIODIC AND ALMOST PERIODIC FUNCTIONS

EDWIN CASTRO and VERNOR ARGUEDAS

Dedicated to Professor Stefan Cobzas at his 60th anniversary

Abstract. In this paper we present some synthesis results about almost periodic functions. Some of these results were discussed in ([3], [10], [11], [12]). A diagram which represents the function sets mentioned in the work is discussed.

1. Preliminaries

The periodic functions play a central role in mathematics. Unfortunately this class of functions is not linear since the sum of periodic functions which not have a non-zero period in common gives a non-periodic function.

A larger class is the class of almost periodic functions which is a linear space. This class was introduced by Harald Bohr ([7], [8]). Bohr's theory of almost periodic functions was studied in connection with differential equations an other theories. For example Riesz and Nagy present some applications for compact operators and Banach algebras ([17]).

Salomon Bochner presents some generalizations of Bohr's definition ([6]) for functions with values in abstract spaces which are useful in the study of differential equations, Fourier series and Fourier transforms ([14], [15]). Laurent Schwartz has presented a definition for almost periodic distributions ([18]).

Our work aims presenting three definitions and discussing some examples of periodic and almost periodic functions.

Received by the editors: 03.04.2006.

2000 Mathematics Subject Classification. 42A75.

Key words and phrases. periodic functions, almost periodic functions, Fourier coefficient, Fourier exponent.

EDWIN CASTRO and VERNOR ARGUEDAS

We introduce the following sets of functions (The domain of the functions is \mathbb{R} and the range is a subset of \mathbb{C})

F: the set of functions $f: \mathbb{R} \to \mathbb{C}$

C: the set of continuous functions

B: the set of bounded functions

P: the set of periodic functions

UC: the set of uniform continuous functions

AP: the set of almost periodic functions

TP: the set of trigonometric polynomials

IAP: the set of almost periodic functions with an almost periodic primitive

$$PC = P \cap C$$
, $BP = B \cap P$, $BC = B \cap C$.

2. Some results about periodic functions

The function

$$f(x) = \cos x + \cos \sqrt{2}x$$

([10], [16]) is clearly not periodic. On the other hand it is the sum of two periodic functions: $\cos \sqrt{2}x$ and $\cos x$, the function f(x) does not attain its infimum -2 but attain its supremum 2.

The function

$$g(x) = \sin x + \sin \sqrt{2}x$$

([10], [13]) is also non-periodic and does not attain the infimum and the supremum.

In each case there exist a sequence $(x_n)_{n\in\mathbb{N}}$ such that $x_n\to +\infty$ and $f(x_n)\to -2$ and in the second example there is a sequence $(y_n)_{n\in\mathbb{N}}$ such that $y_n\to +\infty$ and $f(y_n)\to 2$.

For the class PC we have the following results.

Theorem 2.1. ([2], [10]) If $f \in CP$ then f attains its infimum and supremum.

Theorem 2.2. ([2], [10]) Let $f \in CP$ with period $T, T \in \mathbb{R} \setminus \mathbb{Q}$ then the set:

$$A = \{ f(n) : n \in \mathbb{N} \}$$

is dense in [m, M], where m denotes the minimum and M the maximum of the function.

If the function in the previous theorem has rational period, the theorem is not true for example for the function $f(x) = \sin \pi x$, in this case the set A is finite, $A = \{0\}$.

Theorem 2.3. ([2]) Let $f \in CP$ with rational period, then the set:

$$A_{\theta} = \{ f(n\theta) : n \in \mathbb{N} \}$$

is dense in [m, M], $\forall \theta \in \mathbb{R} \setminus \mathbb{Q}$.

Example 2.1. Consider the function

$$f(x) = p\cos ax + q\cos bx + r$$

with $a, b, p, q, r \in \mathbb{R}$.

- (1) If $pq \neq 0$ and $a/b \in \mathbb{R} \setminus \mathbb{Q}$ then $f \in C \setminus P$.
- (2) If $pq \neq 0$ and $a/b \in \mathbb{Q}$ with $a \neq l\pi$ and $b \neq s\pi$, $\forall l, s \in \mathbb{Q}$ then $f \in CP$ (see example 3.1) and the set

$$\{f(n) \mid n \in \mathbb{N}\}\$$

is dense in [m, M].

(3) If $pq \neq 0$ and $a = l\pi$, $b = s\pi$ for some $l, s \in \mathbb{Q} \setminus \{0\}$ then $f \in CP$ and the set

$$A_{\theta} = \{ f(n\theta) : n \in \mathbb{N} \}$$

is dense in [m, M].

For a discussion and examples about the maxima and minima for periodic and almost periodic functions see [19].

Example 2.2. The function $f(x) = e^{iax} + b$, $a \in \mathbb{R} \setminus \{0\}$, $b \in \mathbb{C}$ is periodic with period $2\pi/a$.

If a is a non rational multiple of π then the set:

$$\{f(n): n \in \mathbb{N}\}$$

is dense in

$$\mathbb{T}_b = \{ z \in \mathbb{C} : |z - b| = 1 \}.$$

If a is a rational multiple of π then the set:

$$\{f(n\theta): n \in \mathbb{N}\}$$

is dense in \mathbb{T}_b , $\forall \theta \in \mathbb{R} \setminus \mathbb{Q}$.

3. Almost periodic functions ([1], [2], [4], [6], [9], [11])

Let $f \in C$, we call $f \in AP$ if it has one of the following mutually equivalent properties:

(AP1) (Corduneanu, Besicovitch, Bohr, Bochner) $\forall \ \varepsilon > 0$ there is a trigonometric polynomial

$$T_{\varepsilon}(x) = \sum_{k=1}^{n} C_k e^{i\lambda_k x}$$
 (depends of ε)

$$C_k \in \mathbb{C}, \ \lambda_k \in \mathbb{R}, \ k = 1, \dots, n, \text{ depending on } \varepsilon$$

such that $|f(x) - T_{\varepsilon}(x)| < \varepsilon, \ \forall \ x \in \mathbb{R}$.

(AP2) (Bochner, Besicovitch) $\forall \varepsilon > 0$ there is l > 0 such that $\forall a \in \mathbb{R}$ there exists $\tau \in [a, a + l]$ such that:

$$|f(x+\tau)-f(x)|<\varepsilon,\ \forall\ x\in\mathbb{R}$$

(AP3) (Bohr, Fink) For every sequence $(\alpha'_n)_{n\in\mathbb{N}}$ one can extract a subsequence $(\alpha_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to+\infty} f(-+\alpha_n)$ exists uniform on \mathbb{R} .

The three definitions are equivalent and useful in applications ([1], [5], [14], [15]).

For generalizations of these definitions see: ([1], [8], [6], [12], [18]).

Some properties of the almost periodic functions have been studied in ([1], [10], [14], [15], [16]).

Example 3.1. Any trigonometric polynomial (AP1) is an almost periodic function. We have:

$$TP \subset AP$$

In particular the function of the example 2.1 is almost periodic.

We are interesting into study of the primitive of an almost periodic function.

Theorem 3.1. ([14], [15]) Let $f \in AP$. Then a primitive F of f is almost periodic if and only F if is bounded on \mathbb{R} .

Example 3.2. Let f be the function of the example 2.1. Then $f \in IAP$ if and only if r = 0.

Theorem 3.2. ([4]) If $f \in CP$ is nonconstant and F is a primitive of f, then:

$$F(x) = Ax + g(x),$$

where T > 0 is the period of f,

$$A = \frac{1}{T} \int_0^T f(t)dt$$

and g is a CP function.

In the paper ([4]) the preceding result has been proved for a function $f: \mathbb{R} \to \mathbb{R}$, $f \in CP$, for a function $f: \mathbb{R} \to \mathbb{C}$ were writing $f = f_1 + if_2$, f_1 the real part of f and f_2 the imaginary part of f and the theorem 3.2 follows.

The following theorems collects various results about the Fourier series theory for almost periodic functions.

Theorem 3.3. ([8], [5], [13], [14], [15]) Let $f \in AP$ then:

(1)
$$a(f,\lambda) := \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t)e^{-i\lambda t} dt$$

exists and is equal to zero excepting a countable set Λ .

(2)
$$\lim_{T \to \infty} \frac{1}{T} \int_{a}^{a+T} f(t)e^{-i\lambda t} dt$$

exists uniformly for $a \in \mathbb{R}$.

For $\lambda = 0$ we denote its value by M(f), and call it the mean of f.

(3) (Parseval's equality) The Parseval's equality holds:

$$M(|f|^2) = \sum_{\lambda \in \Lambda} |a(f,\lambda)|^2$$

where Λ is the set mentioned in (1).

(4) The series $\sum_{n=1}^{\infty} a(f, \lambda_n) e^{i\lambda_n x}$ is called the Fourier series of f and we write:

$$f \sim \sum_{n=1}^{\infty} a(f, \lambda_n) e^{i\lambda_n x}$$

If the precedent series converges uniform then:

$$f(x) = \sum_{n=1}^{\infty} a(f, \lambda_n) e^{i\lambda_n x}, \quad x \in \mathbb{R}$$

(5) If the derivate (primitive) of f is an almost periodic function then its Fourier series is obtained by formal derivation (integration) of the Fourier series of f.

Theorem 3.4. ([14], [15], [16]) Let $f \in AP$.

- (1) If a primitive of f is almost periodic then M(f) = 0.
- (2) If the series $\sum_{n=1}^{\infty} \left| \frac{a(f, \lambda_n)}{\lambda_n} \right| < +\infty$ then $f \in IAP$ and:

$$\int_0^x f(t)dt = a_0 + \sum_{n=1}^\infty \frac{a(f, \lambda_n)}{\lambda_n} e^{i\lambda_n x}$$

(3) If the exponents in the Fourier series of f have the property:

$$|\lambda_n| > \alpha > 0, \ \forall \ n \in \mathbb{N} \ then \ f \in IAP.$$

(4) If $\int_0^x f(t)dt = Ax^{\lambda} + g(x)$, $x \in \mathbb{R}_+$, $\lambda \ge 0$ and $g \in BC$ then A = M(f) and $\lambda = 1$

Example 3.3. We consider the function

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} e^{i2^n x}, \quad x \in \mathbb{R}$$

We see that $f(0) = \frac{\pi^2}{6}$ and $f(x) \neq \frac{\pi^2}{6}$, $\forall x \neq 0$ then $f \in C \setminus P$. On the other hand $f \in AP$ and $f \notin TP$. We have

$$\int_0^x f(t)dt = a_0 + \sum_{n=1}^\infty \frac{1}{i2^n n^2} e^{i2^n x}$$

and $f \in IAP$. We conclude

$$f \in IAP \setminus (CP \cup TP)$$
.

Example 3.4. ([14], [15]) We consider the function:

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} e^{ix/n^2}, \quad x \in \mathbb{R}.$$

The function is almost periodic, non periodic. We observe that $\lambda_n = 1/n^2$, $n \in \mathbb{N}$ and $\lambda_n \to 0$ also M(f) = 0.

If a primitive of f would be almost periodic then:

$$\int_0^x f(t)dt \sim a_0 + \sum_{n=1}^{\infty} e^{ix/n^2}.$$

But this is not possible since the last series is violating the Parseval's equality.

The function f is an example of an almost periodic function which is not a trigonometric polynomial, has mean zero, $\lambda_n \to 0$ and the primitives are not almost periodic. We conclude

$$f \in AP \setminus (CP \cup IAP \cup TP).$$

4. Diagram of functions

The relations:

$$AP \subset BC$$
, $AP \subset UC$, $CP \subset AP$

have been studied ([8], [5], [10], [13], [14], [16]).

The following examples shows the inclusions between the considered sets of functions are strict.

Examples

4.1.
$$f \in F \setminus (P \cup B \cup C)$$

$$f(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

4.2. $f \in C \setminus (UC \cup P \cup B)$

$$f(x) = x^2$$

4.3.
$$f \in BC \setminus (UC \cup P)$$

$$f(x) = e^{ix^2}$$
 ([10])

4.4.
$$f \in (UC \cap B) \setminus (P \cup AP)$$

$$f(x) = \operatorname{artan} x$$
 ([10])

4.5. $f \in B \setminus (C \cup P)$

$$f(x) = \begin{cases} \sin 1/x, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 $4.6.\ f \in AP \setminus (CP \cup IAP \cup TP)$

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2} e^{\frac{ix}{n^2}} \quad \text{(Example 3.4)}$$

4.7. $f \in UC \setminus (B \cup P)$

$$f(x) = x$$

4.8. $f \in (TP \cap IAP) \setminus P$ (Examples 2.1 and 3.2)

4.9. $f \in P \setminus (B \cup C)$

$$f(x) = \begin{cases} \tan x, & x \neq (2n+1)\frac{\pi}{2}, & n \in \mathbb{Z} \\ 0, & x = (2n+1)\frac{\pi}{2}, & n \in \mathbb{Z} \end{cases}$$

4.10. $f \in BP \setminus C$

$$f(x) = x - [x]$$

4.11. $f \in CP \setminus TP$

First we consider the function $\psi:[0,2]\to[0,1]$

$$\psi(x) = \begin{cases} x, & x \in [0, 1] \\ 2 - x, & x \in [1, 2] \end{cases}$$

The function f is the function:

$$f(x) = \psi(x - 2n), \quad x \in [2n, 2(n+1)], \quad n \in \mathbb{Z}.$$

4.12. $f \in TP \cap CP \cap IAP$

(Example 2.1 and 3.2)

4.13. $f \in IAP \setminus (CP \cup TP)$

(Example 3.3)

PERIODIC AND ALMOST PERIODIC FUNCTIONS

$$4.14. \ g \in (CP \cap IAP) \setminus TP$$

$$g(x) = f(x) - M(f)$$

f is the function of the example 4.11

4.15. $f \in TP \setminus (IAP \cup P)$

(Example 2.1 and 3.2)

4.16. $f \in (TP \cap CP) \setminus IAP$

(Examples 2.1 and 3.2)

F	1						
			C 2				
		В	BC 3				
		5	UC 4				7
		9	AP 6		TP = 1	5	7
				$1AP \\ 13$	8		
	P 9	<i>BP</i> 10	<i>CP</i> 11	14	12	16	

References

- [1] Amerio, Luigi, Prouse Giovanni, Almost periodic functions and functional equations, Van Nostrand Company, New York, 1971.
- [2] Andrica, Dorin, Asupra unor şiruri care au mulțimile punctelor limite intervale, Gazeta Matematică, 84(1979), no.1, 404-406.
- [3] Andrica, Dorin, Asupra unei clase largi de funcții primitivabile, Gazeta Matematică A, no.4(1986), 169-177.

EDWIN CASTRO and VERNOR ARGUEDAS

- [4] Andrica, Dorin, Piticari, Mihai, An extension of the Riemann-Lebesgue lemma and some applications (to appear).
- [5] Bohr, Harald, Sur les fonctions presque-périodique, Comptes Rendus, Paris 177, 737-739(1923).
- [6] Bohr, Harald, Almost periodic functions, Chelsea, New York, 1951.
- [7] Bohr, Harald, On the definition of almost periodicity, Journal d'Analyse Mathématique 1, 11-27(1951).
- [8] Besicovitch, A.S., Almost periodic functions, Dover, New York, 1954.
- [9] Bochner, Salomon, Collected papers of Salomon Bochner Part 2, American Mathematical Society, Providence R.I., 1992.
- [10] Castro, Edwin, Funciones periódicas, cuasiperiódicas y clasificación de funciones, Revista de Matemática: Teoria y Aplicaciones 1(1), 1994, 73-86.
- [11] Castro, Edwin, Arguedas, Vernor, Algunas aspectos teóricos de las funciones cuasiperiódicas N-dimensionales, Revista de Matemática: Teoria y Aplicaciones 7(1-2), 2000, 165-174.
- [12] Castro, Edwin, Arguedas, Vernor, N-dimensional almost periodic functions II, Revista de Matemática: Teoria y Aplicaciones 10(1-2), 2003, 199-205.
- [13] Cooke, R., Almost periodic functions, Amer. Math. Monthly 88(7)(1981), 515-525.
- [14] Corduneanu, C., Almost periodic functions, Chelsea Publishing Company, New York, 1989.
- [15] Fink, A.M., Almost periodic differential equations, Lecture Notes in Mathematics 377, Springer Verlag, New York 1974.
- [16] Muntean, Ioan, Analiză funcțională: Capitole speciale, Universitatea Babeş-Bolyai, 1990.
- [17] Riesz, F., Nagy, B.Sz., Functional analysis, Ungar. 1955.
- [18] Schwartz, L., Les distributions, Hermann, Paris, 1951.
- [19] Arguedas Vernor, Castro Edwin, Maximos y míminos de funciones cuasiperiódicas, Simposium de Matemáticas aplicadas a las ciencias, Universidad de Costa Rica, 2006 (to appear).

Universidad de Costa Rica,

ESCUELA DE MATEMÁTICA

 $E ext{-}mail\ address:$ hyperion32001@yahoo.es