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THE EXPONENTIAL MAP ON THE SECOND ORDER TANGENT
BUNDLE

NICOLETA BRINZEI-VOICU

Abstract. On the 2-tangent (or 2-jet) bundle T2 M of a Riemannian man-

ifold endowed with geometrical objects as in [1] and [2], the first variation
1

of the energy E = [ (¢,¢) is computed and the conditions such that its
0

extremal curves should be invariant to the group of homotheties are de-
termined. In these conditions, by using homotheties, we define the expo-

nential map on T2M.

1. Introduction

The geometry of the second order tangent bundle T2M (called as well ”2-
osculator bundle” and denoted by Osc?M), constructed by R. Miron and Gh. Atana-
siu, ([12]-[17]) represents the geometry of the jet-space J3M, endowed with charac-
teristic geometrical objects as: 2-tangent structure, nonlinear connections and N-
linear connections. This construction allows the prolongation to T2M of Riemannian
and Finslerian structures of M. Within this geometrical framework, V. Balan and
P.Stavrinos ([3], [4], [18]), defined geodesics of T2M as stationary curves of the dis-
tance Lagrangian L(c) = 1/(¢, ¢) and deduced their equations. In these papers, the
authors use linear connections D with the property that the 2-tangent structure J is
absolutely parallel with respect to D.

A notion which plays a major role in our considerations is that of homogeneity
of a function given on T?M (respectively, of a vector field on T?M), defined and

studied by M. de Leon and E. Vasquez, [5], R. Miron, [7], Gh. Atanasiu, [2].
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In this paper, we define geodesics as extremal curves of the energy Lagrangian
E = (¢,¢) (not of the distance Lagrangian, as in [3], [4], [18]), deduce their equations
(Theorem 5), study the conditions that an exponential map could be defined on T2 M
(Theorem 7) and construct this application. It is worth mentioning the following
facts:

1. for Lagrangians defined on T?M, the integral of action I(c) essentially
depends on the parametrization of the curve ¢; this is why the classical technique of
defining the exponential map (which relies on re-parametrizations) is here replaced
by a technique which uses the group of homotheties;

2. throughout the paper, by N- linear connection we shall mean (as in Gh.
Atanasiu, [1]) a linear connection which preserves by parallelism the distributions

generated by a nonlinear connection IV, but is not necessarily compatible with J.

2. The 2-tangent bundle T2M

Let M be a real differentiable manifold of dimension n and class C*°; the
coordinates of a point « € M in a local chart (U, ¢) will be denoted by ¢ (z) = (xl) ,
i =1,..,n. Let (Osc?M, 7% M) be its 2-osculator bundle ([12]-[17]), which will be
called in the following, 2-tangent bundle and denoted by (T?M, =% M), ([1], [2]. A
point of T?M will have in a local chart the coordinates (x?, yM7 y(g)i).

Let N be a nonlinear connection on T2M, given by its coefficients (N%, N%)

W’ "
[1], [7], [8]. Then, the adapted basis to N is
§ § ) )
B= {61 = @ = 5y(0)i751i = 6y(1)i762i = 5y(2)l}7
where
5, = 84 - JL,NJL
szt Ozt (1) oy(Di (2)" Oy(2)i
5 ;0
Sy 0F oy )i ay@i (1)
) 0

Sy@i oy
The dual basis of B is B* = {dwi, 6y(1)i,5y(2)i}, given by
oy O = dat, syWi = dy Dt 4 Mida? | 5y Pt = dy@t + Midy™ + Mida'.  (2)
@’ )’ 2’
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The bases above correspond to the direct-sum decomposition

Tu (T2M) Nu@Nlu@VQIM (3)

T: (T°M) = N;&N;, &V, YueT?M.

Then, a vector field X € X (TQM ) is represented in the local adapted basis

as
X = x5 4 xWig, 4 x@ig,, (4)

with the three right terms (called d-vector fields) belonging to the distributions N,
N7 and V5 respectively.
A 1-form w € X* (TQM) will be decomposed as

w = wgo)dxi + wgl)éy(l)i + wi(g)(Yy(z)i. (5)

Similarly, a tensor field T' € 77 (T2M) can be split with respect to (3) into compo-
nents , named d-tensor fields.

The F (TzM)—linear mapping J : X (T2M) —- X (TzM) given by
J (8;) = 614, J (614) = 624, J (2) = 0 (6)

is called the 2-tangent structure on T?M.,[7], [8].
Let

H={h|h:R>R, teR}}
be the group of homotheties, ([1], [5], [7]), of the real numbers set. Then, H acts on
T?M as a one-parameter group of transformations, as follows:
(he,u) = he (u) : Hx T*M — T?M, where

hy (z s, y<2>) — (x ty ), t2y<2>> ) (7)

A function f: T?M — R, which is differentiable on T2M and continuous on
the null-section 0 : M — T?M is called homogeneous of degree r (r € Z) (or, shortly,
r-homogeneous) on the fibres of T?M, if

foh =t"f, VteR:, (8)
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2 _ x ()i (1)i (2)i
A vector field X € X (T M) , X =X Dt + X By + X pyen
is r-homogeneous , [1], if and only if X% are (r — 1)-homogeneous, XM are r-

homogeneous and X (?* are (r + 1)-homogeneous functions.

3. N- linear connections

An N-linear connection D, [1], is a linear connection on T2 M, which preserves
by parallelism the distributions N, N7 and V5. An N- linear connection, in the sense of
the definition above, is not necessarily compatible to the 2-tangent structure J (an N-
linear connection which is also compatible to J is called, [1], a JN-linear connection).

An N- linear connection is locally given by its coefficients

Lt, L' L', C%', C%', . C' . C' . C*  C¢% 9
©00) 777 (10) 777 20) 777 (01) IF7 (11) 7K (21) TF (02) I (12) K7 (22) J’“) O

DI'(N) = (
where
Ds05 = L jx0i D01y = Ltjpouis Do 02j = L 02
Ds, 05 = (Oq)ljk(sh Ds,,, 015 = (g)ljkahﬁ Ds,,, 025 = (g)zjk@i : (10)
D5, 05 = C 3400y Dsy 015 = C 753010, Dsyy 005 = (g)ijkézi

(02) (12)

In the particular case when D is J-compatible, we have

(00) 7 (10) % 7 (20) 7 ik
(oq) ik = (% ik = (g) ik = uc)jk’
G = G G =G

The torsion tensor of an N- linear connection D, T (X,Y) = DxY — Dy X —
[X,Y], is well determined by the following components, which are d-tensors of (1,2)-
type ([1], [7], [8]:

),
’U’yT((S,Bkv 5@_}) = (g;)jkd’vh «, ﬂ7 Y= 1a 27
7).

the detailed expressions of (1; )ij can be found in [1].
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The curvature of the N- linear connection D, namely, R(X,Y)Z =
DxDyZ — DyDxZ — Dix,y)Z, is completely determined by its components (which
are d-tensors):

R((S’ylaéﬂk) 5O¢j = R ;k[éah a7ﬁ572071a2~
(aB)

4. Metric structures and geodesics on T?M

A Riemannian metric on T?M is a tensor field G of type (0,2), which is
non-degenerate at each point p € T?M and is positively defined on T2M.

If G is a Riemannian metric on T?M, we denote
(X,Y):=G(X,Y),VX,Y € X(T*M). (11)
In this paper, we shall only consider metrics in the form
G = gyda’ @da’ + g6y @5y + g5y @6y, (12)
(0) (1) (2)
this is, so that the distributions N, N7 and V5 generated by the nonlinear connection
N are orthogonal in pairs with respect to G.

An N- linear connection D is called metrical if DxG = 0, VX € X(T*M).

This means
XY, Z)=(DxY,Z)+(Y,DxZ), VX,Y,ZEX(TQM). (13)

In the following, we shall consider throughout the paper T?M endowed with:

e a nonlinear connection NV;

e a Riemannian metric G;

e a metrical N- linear connection D with coefficients 9.

Let ¢ : [0,1] — T2M, c(t) = (2" (t),yW" (¢),y@" (t)) be a piecewise smooth
curve and 0 = to < t; < ... < tp = 1 a division of [0,1] so that ¢, , 4, be of class
C on each interval [t;_1,t;]. Let us denote ¢ (0) = p, ¢(1) = gq.

A wariation of ¢ (with fixed endpoints) is a mapping « : (—¢,¢) x [0,1] —
T2M, (where ¢ > 0), with the properties

1. a(0,t) = c(t), Yt € [0, 1];

2. « is continuous on each (—¢,¢) x [t;_1,t;], Vi=1,..., k.
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Let @ the mapping defined on (—¢,¢) by
a(u)(t) = a(u,t).

If « is a variation with fixed endpoints of ¢, then the vector field W €
X (TQM) along ¢, given by
Oa

W) = o (0.0) (14)

is called the deviation vector field , [3], [4], [18], attached to a. We obviously have
W (0)=WwW(1)=0.
Let us denote, as in [3], [4], [18], V = ¢. Then, V locally writes

e=V =V®is,,,

with 1) (2)
i dl’i . (Sy 1) . 6y 2)i
74 CLAndi 74Dt A 74 S
dt dt dt
Let also
DV , , ,
A= = A0S AV, - APy, (15)
be the covariant acceleration, where, for X € X (T M ) , we denoted
DX
_— = DC'X,
dt
and
AX=X(ty)—X(t),te0,1], X € X (T°M), (16)
the jump of X € X (T2M) in t.
The energy of the curve c is
1
E(c)= / g Z-jV(O)iV(O)j + g Z.jv(l)iv(l)j + g ijV(Q)iV(z)jdt, (17)
(0) 1) (2)

0

1
this is, E (¢) = [(V, V) dt.
0
Definition 1. We call a geodesic of T?>M, a critical path c : [0,1] — T?>M of the

energy E, which is C*-smooth on the whole [0,1].

By a direct computation, taking into account the metricity of the N- linear
connection D, we obtain
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THE EXPONENTIAL MAP ON THE SECOND ORDER TANGENT BUNDLE

Theorem 2. (The first variation of the energy): If ¢ : [0,1] — T?M is a
piecewise smooth path and o : (—¢,€)x[0,1] — T2M is a variation with fized endpoints

of ¢, then

e
[

Juzo = <WAMO+/@MUUN%%WAMt (18)
0

%

1dE (@ (u))
2 du

I
=)

Remark 3. If the curve ¢ is C™-smooth on the whole [0,1], then

Ju=0 :/<T(W, V), V) — (W, A)dt.
0

1dE (@ (u)
2 du

In order to deduce the equations of the geodesics of T?M, in (18), we write

the term (T" (W, V), V) in the form (F, W); in local coordinates, one obtains

2
Theorem 4. 1. F= Y F@i§,; given by
a=0
(a)i il a2 (B)iy (Vh
F = (g) (g)kh(g)JlV Vv ) OZZO,].,Q (19)
« ¥ «a

s a vector field, globally defined along c.
2. There holds the equality

(TW,V),V) =W, F). (20)

3. The vector field F' does not depend on the variation a of c.

Taking into account the previous theorem, we get

_ k—1 1
%WL‘:O _ _Z; (W, A V) —/(W,F—A) dt.
= 0

We have proved this way
Theorem 5. The C*®-smooth curve c : [0,1] — T?M, t — (2 (t),y™M? (t),yP? (1))
is a geodesic of T>M if and only if

D dc

E% =L, (21)
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or, in local coordinates,

a =
py Wi )
= Fi (22)
py@i PO
dt
It will be useful to write the last equalities in the following form
4y (0)i ) . ) , . . )
p7 + (Olé)ljkv(o)kv(o)J + (g)ljkv(l)kv(oh + (()C;)ijv(mkv(O)J — F(0)17
4y (i ) ) ) ) ) ) )
T + (ﬁ)%jkv(o)kv(lh + (g)%jkv(l)kv(l)J + (g)%jkvﬂ)kv(lh = FMi (23)
4y ()i ) ) ) . ) . )
T + ((%)Zkv(o)kv(?h + (Oclf)zjkv(l)kv(2)3 + (g)zjk‘/@)kv(?h = F@i

5. Invariance to homotheties of the equations of geodesics

We consider the homotheties hy in (7).

Definition 6. Let ¢ : [0,1] — T?M, t — c(t)

(z(@®),yW (t),y? (t)) be an arbi-

trary curve and A > 0 a real number. We call the homothetic of ¢ the curve

C: [O, i} — T2M, ¢ (;\t) = hy (c(t)), (24)
and we denote
c=hy(c).

Let us remark that hy (¢) # hy oc.

¢ = hy (c) locally writes

8l
/N
> =

~
~—

I

H&

—

N

/1 ,
el (v) = i), (25)
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If we suppose that

(N) ijare 1-homogeneous, (N) ijare 2-homogeneous, (26)
1 2

(which implies that g\l) * are 1-homogeneous and, {\4) % are 2-homogeneous), then, d;
1 2
are 1-homogeneous, d1; are 0-homogeneous and d5; are —1-homogeneous; consequently,

the tangent vectors of ¢ are given by

—(a)i [T :
v (A) — ALY @i (1) 4 = 0,1,2. (27)
[t .
or V Y= ARYV (t).
If we claim that, for any geodesic ¢ of T2M, the homothetic ¢ should be a

geodesic, too, we obtain:

Theorem 7. Let (J}/)ZJ be 1-homogeneous , (J;T)ijbe 2-homogeneous. If:

1 L)ijk are homogeneous of degree 0;

. L%, L%,
00)7%" (10)7% (20

2. (Ocl’)ijk, (g)ijk, (g)ijk - homogeneous of degree —1;
3. (g)zjk, (g)zjk, (g)zjk - homogeneous of degree —2;

4. g i; - homogeneous of degree —a, @ =0, 1,2,
()

then the equations of the geodesics of T?>M are invariant to the homotheties

(24).

Proof. 1., 2. and 3. can be obtained by a direct computation.

In order to prove 4., we must take into account that:

o V(@ are (a + 1)-homogeneous;

. () )
e in the expression of F(®? the term (g)?lV(B)JV(W)h is homogeneous of
(0%
degree vy —f—a+B+1+v+1=2y—a+2;
e if g5 are homogeneous of degree —v, then ¢ *" are homogeneous of

() Q0]
degree +7.
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6. The exponential map of T?M

It is known, [7], that for regular Lagrangians defined on T2M, the integral
of action I(c) essentially depends on the parametrization of the curve ¢ (the Zermelo
conditions); consequently, the equations of geodesics (22) are generally not invariant
to re-parametrizations of the form t +— %, A > 0. This is why, instead of the classical
technique of defining the exponential map (which relies on such re-parametrizations),
we shall use the homotheties ¢ +— ¢ as defined above.

Let us remark, for the beginning, that the equations of geodesics (22) con-
stitute a system of 6n ODE system with the unknown (real) functions z*, 37, y(2)?,
Vi (i ()i This allows us to state an existence and uniqueness result.

For p € T?M, let us denote in the following, p := (z*,y™?, y(?) its coordi-
nates in a local chart and, for X € X(T?M), X := (X7 x(1)i x(2)i),

Let py := (21,9 9P € T2M and Vi := (VO vV v e T, (T2M)
be arbitrary. There holds
Theorem 8. There exists a neighbourhood W of (p1,V1) € RS and a real number

e > 0 so that, for any (po, Vo) € W, the system (22) has a unique solution
t=(p(t),V (1)
defined for t € (—¢e,€) and which satisfies the initial conditions
p(0) =po, V(0)=". (28)

Furthermore, the solution depends smoothly on the initial conditions (28).
In the conditions of Theorem 7, if ¢ is a geodesic of T2M, then ¢ = hy (c) is
also a geodesic. We are now able to state

Theorem 9. In the conditions of Theorem 7, for any pg € T?>M there is an e > 0 so
that, for any tangent vector V € T,, (T?>M), with |V || < ¢, there exists the geodesic

¢:(=2,2) = T2M, t (zi 1),y (1), y @ (t))

with the initial conditions
de

c(0) = po,
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Definition 10. The point ¢ (1) := (2° (1),yM" 1),y (1)) is called the exponential
of Vel (T2M) in po and will be denoted by

c(1) =exp,, (V). (29)
Let us prove Theorem 9:
Let po € T°M, e > 0 and V € T,, (T?>M) with |[V| < e be arbitrary.
Then, according to Theorem 8, for any p, € T?M and for any V € T3, (T2M), there

uniquely exists the geodesic ¢y : (—2e2,2e2) — T2M with

der —
e (0) =P, L (0) =V (30)
We set
Do + = h% (Po)
— 1
Vo ==n  (V)eTp (T°M) (31)
€2 €2 Po
e < £1&€2.

(V is the tangent vector field of h1 (c)).
e2

Because ||V|| < € and according to (31), we have
— 1
I7l= 2 Wl <&
2

consequently, there uniquely exists the geodesic ¢y with the initial conditions (30).

Furthermore, if |t| < 2, then |eat| < 25, which allows us to define
c(t) = he, (7 (1) : (—2,2) — T M,

then c is obviously a geodesic and is uniquely defined by the above equality. Further-

more,

¢(0) = hey (e (0)) = ey (30) = (hew 0 h 1) (p0) = o,

Let Z be the tangent vector field of ¢y then, Z (0) =V = éhl - (V); taking into
EDR
~1
account that hl, = (h*l) , we get
)

dc % .2 1 * *

GO =iy (Z) =e bl (hy, (V) =V,
which completes the proof.
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It is worth mentioning that:

1. The exponential map in p € T?M is generally defined only for small values
of [V||. If it exists, the value exp,, (V) is unique.
2. If c is a geodesic of T?M with pg = ¢ (0), V = é(0), then

c(t) = exp, (tV). (32)

7. Example

Let (M, g) be a Riemannian manifold, (T?M, 7%, M), its second order tangent
bundle and T2M = T2M \{0}, i.e., T?M without its null section. We consider the

following geometric objects on T2M:

e the canonical nonlinear connection N, [8], given by its dual coefficients

) , 1 ,
M, = 4y Ok, M = =8 C (7 OF) + MM
w7 R ) 2{ ) T R

where 'y]i-k = yji.k (z) are the Christoffel symbols of g and C =y 1)188 + y(Q)Z8 ?1)1.;
e the homogeneous N-lift of the metric g, defined by prof. Gh. Atanasiu,

2,

o

G = gijdz’ @ da? +

Sy g §y(1i
e 2 8

whete [y = v/

o
e the canonical N-linear connection, DT (N), [2], given by the coefficients

9i8y"" @ 5y

L= LY = Lgk—%k( ), Clk_o

00 (107" T 20)

Cip = (i + oy" — gy ™), C iy =20

SR TIWETEANC i~ gy Tendt T Tyt
b= Clp= Cl=0,

07 ayt @)t

By a direct calculus, one proves that the conditions of Theorem 7 are accom-

plished; consequently, if T2M is endowed with these structures, the exponential map

can be defined on ﬁ]\//l
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