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ON SOME INTEGRAL EQUATIONS WITH DEVIATING
ARGUMENT

OLARU ION MARIAN

Abstract. The purpose of this paper is to study the following functional

equation with modified argument:

x(t) = g(t, hx(t), x(t), x(0)) +

θt∫
−θt

K(t, s, x(s))ds,

where θ ∈ (0, 1), t ∈ [−T, T ], T > 0.

1. Introduction

Let (X, d) be a metric space and A : X → X an operator.We shall use the

following notations:

FA := {x ∈ X | Ax = x} the fixed points set of A.

I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y } the family of the nonempty invariant subsets of A.

An+1 = A ◦An, A0 = 1X , A1 = A,n ∈ N.

Definition 1.1. [4] An operator A is weakly Picard operator(WPO)if the sequence

(Anx)n∈N

converges, for all x ∈ X and the limit(which depend on x ) is a fixed point of A.

Definition 1.2. [4],[1] If the operator A is WPO and FA = {x∗}then by definition

A is Picard operator.
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Definition 1.3. [4] If A is WPO, then we consider the operator

A∞ : X → X, A∞(x) = lim
n→∞

Anx.

We remark that A∞(X) = FA.

Definition 1.4. [1] Let be A an WPO and c > 0.The operator A is c-WPO if

d(x, A∞x) ≤ d(x, Ax).

We have the following characterization of the WPOs

Theorem 1.1. [4]Let (X, d) be a metric space and A : X → X an operator. The

operator A is WPO (c-WPO) if and only if there exists a partition of X,

X =
⋃
λ∈Λ

Xλ

such that

(a)Xλ ∈ I(A)

(b)A |: Xλ → Xλis a Picard(c-Picard) operator,for all λ ∈ Λ.

For the class of c-WPOs we have the following data dependence result.

Theorem 1.2. [4] Let (X, d) be a metric space and Ai : X → X, i = 1, 2 an opera-

tor.We suppose that :

(i)the operator Ai is ci −WPOi=1,2.

(ii)there exists η > o such that

d(A1x,A2x) ≤ η, (∀)x ∈ X.

Then

H(FA1 , FA2) ≤ ηmax{c1, c2}.

Here stands for Hausdorff-Pompeiu functional

We have
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Lemma 1.1. [4],[1] Let(X, d,≤) be an ordered metric space and A : X → X an

operator such that:

a)A is monotone increasing.

b)A is WPO.

Then the operator A∞ is monotone increasing.

2. Main results

Data dependence for functional-integral equations was study in [2],[3],[4],[1].

Let(X, ‖ · ‖) a Banach space and the space C([−T, T ], X) endowed with the

Bieleski norm ‖ · ‖τ defined by

‖x‖τ = max
t∈[−T,T ]

‖x(t)‖e−τ(t+T ).

In[1] Viorica Muresan was study the following functional integral equation:

x(t) = g(t, h(x)(t), x(t), x(0)) +

t∫
0

K(t, s, x(θs))ds, t ∈ [0, b], θ ∈ [0, 1]

by the weakly Picard operators technique.

We consider the following functional-integral equations with modified argu-

ment:

x(t) = g(t, hx(t), x(t), x(0)) +

θt∫
−θt

K(t, s, x(s))ds, (1)

where:

i)t ∈ [−T, T ], , T > 0.

ii)h : C([−T, T ], X) −→ C([−T, T ], X), g ∈ C([−T, T ] × X3, X),K ∈ C([−T, T ] ×

[−T, T ]×X2, X).

We suppose that the following conditions are satisfied:

(c1) there exists l > 0 such that

‖hx(t)− hy(t)‖ ≤ l‖x(t)− y(t)‖,
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for all x, y ∈ C([−T, T ], X), t ∈ [−T, T ].

(c2) There exists l1 > 0, l2 > 0 such that

‖g(t, u1, v1, w)− g(t, u2, v2, w)‖ ≤ l1‖u1 − u2‖+ l2 ‖v1 − v2‖ .

for all t ∈ [−T, T ], ui, vi, w ∈ X, i = 1, 2.

(c3) There exists l3 > 0 such that

‖K(t, s, u)−K(t, s, u1)‖ ≤ l3‖u− u1‖,

for all t, s ∈ [−T, T ], u, u1 ∈ X.

(c4)l1l + l2 < 1.

(c5)g(0, h(x)(0), x(0), x(0)) = x(0) for any x ∈ C([−T, T ], X).

Let A : C([−T, T ], X) −→ C([−T, T ], X) be defined by

Ax(t) = g(t, hx(t), x(t), x(0)) +

θt∫
−θt

K(t, s, x(s))ds (2)

Let λ ∈ X and Xλ = {x ∈ C([−T, T ], X) | x(0) = λ}. Then C([−T, T ], X) =⋃
λ∈X

Xλ is a partition of C([−T, T ], X).From c5 we have that Xλ ∈ I(A).

For studding of data dependence we consider the following equations

x(t) = g1(t, hx(t), x(t), x(0)) +

θt∫
−θt

K1(t, s, x(s))ds (3)

x(t) = g2(t, hx(t), x(t), x(0)) +

θt∫
−θt

K2(t, s, x(s))ds (4)

Theorem 2.1. We consider the equation (1) under following conditions:

(i)The conditions c1 − c5 are satisfied.

(ii)The operators h(·), g(t, ·, ·, ·),K(t, s, ·, ·) are monotone increasing.

(iii)There exists η1, η2 > 0 such that

‖g1(t, u, v, w)− g2(t, u, v, w)‖ < η1,

‖K1(t, s, u)−K2(t, s, )‖ ≤ η2
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for all t ∈ [−T, T ], u, v, w ∈ X.Then:

(a)For all x,y solutions of (1) with x(0) ≤ y(0) we have x(t) ≤ y(t), for all t ∈ [−T, T ].

(b) H(S1, S2) ≤
η1 + 2η2T

(1− l1l − l2 − l3
τ )

, where S1, S2 is the solutions set of(3),(4).

Proof We denote with Aλ the restriction of the operator A at Xλ.First we show that

Aλis a contraction map onXλ.Fromc1 − c5 we have that

‖Aλx(t)−Aλy(t)‖ ≤ (l1l + l2) ‖x(t)− y(t)‖+

θt∫
−θt

‖K(t, s, x(s))−K(t, s, y(s))‖ dsleq

≤ (l1l + l2) ‖x− y‖τ eτ(t+T ) + l3 ‖x− y‖τ

θt∫
−θt

eτ(t+T )ds.

So A is c-WPO with

c =
1

1− l1l − l2 −
l3
τ

.

Using the theorem 1.2 we obtain (b).

For proof of (a) let be x,y solutions for(1) with x(0) ≤ y(0).Then x ∈

Xx(0), y ∈ Xy(0).We define

x̃(t) = x(0), t ∈ [0, b]

ỹ(t) = y(0), t ∈ [0, b]

We have

x̃(0) ∈ Xx(0), ỹ(0) ∈ Xy(0), x̃(0) ≤ ỹ(0).

From lemma 1.1 we obtain that the operator A∞ is increasing.It follows that

A∞(x̃(0)) ≤ A∞(x̃(0))

i.e x ≤ y

Next we define ϕ -contraction notion and use this for estimate distance be-

tween two weakly Picard operators.

Let ϕ : R+ −→ R+.
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Definition 2.1. [5] ϕ is a strict comparison function if ϕ satisfies the following:

i) ϕ is continuous.

ii)ϕ is monotone increasing.

iii) ϕn(t) −→ 0, for all t > 0.

iv) t-ϕ(t) −→∞,for t −→∞.

Let (X, d) be a metric space and f : X −→ X an operator.

Definition 2.2. [5] The operator f is called a strict ϕ-contraction if:

(i) ϕ is a strict comparison function.

(ii)d(f(x), f(y)) ≤ ϕ(d(x, y)), for all x, y ∈ X.

Theorem 2.2. [5] Let (X, d) be a complete metric space,ϕ : R+ −→ R+ a strict

comparison and f, g : X −→ X two orbitally continuous operators.We suppose that:

(i) d(f(x), f2(x)) ≤ ϕ(d(x, f(x))) for any x ∈ X and

d(g(x), g2(x)) ≤ ϕ(d(x, g(x))) for any x ∈ X.

(ii)there exists η > 0 such that d(f(x), g(x)) ≤ η, for any x ∈ X

Then:

(a) f,g are weakly Picard operators.

(b)H(Ff , Fg) ≤ τηwhere τη = sup{t | t− ϕ(t) ≤ η}.

Theorem 2.3. We suppose that condition (c5) is verified and the following conditions

are satisfied:

(H1) there exists ϕ a strict comparison function such that

(i)‖hx(t)− hy(t)‖ ≤ ‖x(t)− y(t)‖,

for all x, y ∈ C([−T, T ], X), t ∈ [−T, T ].

(ii)g(t, u1, v1, w)− g(t, u2, v2, w)‖ ≤ aϕ(‖u1 − u2‖) + bϕ(‖v1 − v2‖).

for all t ∈ [−T, T ], ui, vi, w ∈ X, i = 1, 2

(iii) ‖K(t, s, u)−K(t, s, u1)‖ ≤ l(t, s)ϕ(‖u− u1‖),
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for all t, s ∈ [−T, T ], u, u1,∈ X,where l(t, ·) ∈ L1[−T, T ].

(H2)There exists η1, η2 > 0 such that

‖g1(t, u, v, w)− g2(t, u, v, w)‖ ≤ η1,

‖K1(t, s, u)−K2(t, s, )‖ ≤ η2

for all t ∈ [−T, T ], u, v, w ∈ X.

(H3)

a + b + max
t∈[−T,T ]

T∫
−T

l(t, s)ds ≤ 1

Then:

(i)the equation (1) has at least solution.

(ii)H(S1, S2) ≤ τη where η = η1 + 2Tη2, S1, S2 is the solutions set of(3),(4).

ProofLet beA1, A2 : C([−T, T ], X) −→ C([−T, T ], X),

A1x(t) = g1(t, hx(t), x(t), x(0)) +

θt∫
−θt

K1(t, s, x(s))ds

A2x(t) = g2(t, hx(t), x(t), x(0)) +

θt∫
−θt

K2(t, s, x(s))ds.

From∥∥Aix(t)−A2
i x(t)

∥∥ ≤ ‖gi(t, hx(t), x(t), x(0))− gi(t, hAix(t), Aix(t), Aix(0))‖+

+

θt∫
−θt

‖Ki(t, s, x(s))−Ki(t, s, Aix(s))‖ ds

≤ aϕ(‖hx(t)− hAix(t)‖) + bϕ(‖x(t)−Aix(t)‖)+

+

θt∫
−θt

l(t, s)ϕ(‖x(s)−Aix(s))‖ ds ≤ aϕ(‖x(t)−Aix(t)‖) + bϕ(‖x(t)−Aix(t)‖)+

θt∫
−θt

l(t, s)ϕ(‖x(s)−Aix(s))‖ ds ≤ (a + b + max
t∈[−T,T ]

T∫
−T

l(t, s)ds)ϕ(‖x−Aix‖C) ≤
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≤ ϕ(‖x−Aix‖C)

we have that ∥∥Aix−A2
i x

∥∥
C
≤ ϕ(‖x−Aix‖C), i = 1, 2.

Here ‖·‖C is the Chebyshev norm on C([−T, T ], X).

We note that ‖A1x−A2x‖C ≤ η1 + 2Tη2. From this, using the theorem 2.2

we have the conclusions.
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