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BIFURCATIONS OF THE LOGISTIC MAP PERTURBED
BY ADDITIVE NOISE

MARCHIS IULIANA

Abstract. In the paper we analyze, mainly numerically, the bifurcations
of the logistic map perturbed by different type of additive noise: uniformly
and normally distributed random variables. We prove the existence of the
stationary density in both cases using some tools from [6], and study the
bifurcations. In [4] there are numerical results for the uniform noise case.
We extend the simulations for the logistic map perturbed by normally
distributed random variables. In this case we get a different bifurcation
scenario as in the case of perturbation by uniformly distributed random

variables.

1. Basic Notions

Let (X, d) be a metric space and S : X — X be a discrete dynamical system.
Let g € X. Then zg, 1 = S(x0), ©2 = S(x1),-.., T, = S(xp—1),... is the orbit of xzq.
In the deterministic case we usually study the orbit of different zqg € X to find the

dynamics of the system.

Now let &, &1,...&n,-.. be independent random variables and we use formula
Tpy1 = S(xn) + &nyn €N (1)

to find the orbit of a point from X. In this case the orbit of a point zq is different for
different realization of the noise. Thus is more adequate to study the change of the
initial density function.
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Let X = R, g be the density function of the random variables &y, &1,...6n,...
and fy, the density function of x,,. Then we have to find a relation between f, and
fnt1. For this we take an arbitrary bounded, measurable function A : R — R and

calculate the expected value of h(z,+1) in two different ways. Firstly,

h(zpi1)) / hz) fr+ (z (2)

Secondly,

E(h(zn+1)) = E(h(S(zn) + &)

//h )+ 2) fu(9)g () dyd=
/ / h(z) fa(y)g(z — S())dady, 3)

using the change of variables S(y) + z = .

From (2) and (3) we get

foir (@ / FoW)g — S())dy. (4)

We review some notions which we need to study the existence of a stationary
density for a random dynamical system. In the followings let (X, A, 1) be a measure
space.

A linear operator P : L' — L! is called Markov operator if
(a) Pf>0,forall f >0, feL';

() Pl = If1l, for all f >0, f € Lt

A measurable function K : X x X — R is called stochastic kernel if
(a) K(z, y) >0, for all z,y € X;

M) [y K pu(dz) =1, for ally € X.

Let G C R¢ be a measurable, unbounded set, K : G x G — R a stochastic
kernel. A measurable, nonnegative function V' : G — R, for which

lmlliinooV(a:) = 00,
is called Liapunov function.
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Returning to formula (4) we observe that

Pia) = [ fwata = Sw)dy o)
is a Markov operator and
K(z,y) = g(x - S(y))

is a stochastic kernel. We can write formula (4) in the form f,,11 = Pf,, which is
equivalent with f,, 11 = P""!f5, thus we have to study the sequence {P"}.

Let P be a Markov operator. A density function f is a stationary density
it Pf=Ff.

{P"} is asymptotically stable if there exists a unique stationary density
[+ such that

nh_)n;o [|P" — f«|| =0, for every density f.

The proof of the following theorem can be found in [6]. The theorem gives a
sufficient condition for the asymptotic stability of {P"}.
Theorem 1.1. ([6], Theorem 5.7.1, pg 115) Let K : G x G — R be a stochastic
kernel, P the Markov operator given by (5). If K satisfies

/ inf K(z,y)dx >0, forall r>0, (6)
€]

lyl<r

and there exists a Liapunov function V : G — R such that
| Kaa)V@ds <av@+5, 0<a<1, 520 @
G

for every density f, then {P™} is asymptotically stable.

Consider a dynamical system which depends on a parameter r. A value rg
of the parameter is a bifurcation point, if the system changes its dynamics for
this value. There are two approaches in studying bifurcation: the phenomenological
((P)-bifurcation) and the dynamical ((D)-bifurcation) approach.

The (P)-bifurcation approach studies the qualitative changes of stationary
densities. In the simulations we study the changes of the shape of the histogram
for different values of the parameter. To draw the histogram we start with K initial
points X}, X2, ..., X (K a big natural number) and we calculate the (N + 1)th point
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of the orbit of every initial point getting Xx, X%,...,X&, N € N. Then we plot the
histogram of the values X}, X3%.,....XX: we divide the interval [0, 1] into 100 parts
and count how many points are in each small interval. We are looking for parameter
values rg, for which the shape of the histogram changes.

The (D)-bifurcation approach focuses on the loss of stability of invariant
measures. For this we study the Liapunov exponent which is calculated using the

formula

b

where ¢(n,z) = z,. We are looking for parameter values for which the Liapunov
exponent changes its sign.

It is also helpful to draw the bifurcation diagram. For this for every value r of
the parameter we start with an arbitrary initial point g and we calculate the points
Ty, To,...,xn of the orbit, for N big natural number. Then we calculate xn41,..., 27,

M > N + 1, and plot the points (r, xn+1), (T, ZN12)s (1, Tar)-

2. The Deterministic Logistic Map

The deterministic case have been intensively studied. In this case the orbit

of a point g € R can be calculated by the recursive formula
Tnt1 = 1rxn(l —xy),n € N.

In the followings we consider z¢ € [0,1]. The bifurcation scenario in this case is well
known, see for example [2], [1] or [5]. We summarize this scenario for better compar-
ison of the deterministic and stochastic case. In Figure 1 is plotted the bifurcation
diagram and the Liapunov exponent. In simulations we approximate the Liapunov

exponent, by
N-1

M) = 5 3 loglr(1 - 26(k,2)))]
k=0

where N is a big natural number. If 0 < 7 < 1, there are two fixed points: a stable
1

fixed point 0 and an unstable fixed point 1 — —, so the orbit of each point from [0,1]
r

converges to 0. For 1 < r < 3 the fixed point 0 becomes unstable and the orbit of
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FI1GURE 1. Bifurcation diagram and Liapunov exponent in the deter-

ministic case

each point converges to 1 — % Thus r = 1 is a bifurcation point. Another bifurcation
point is r = 3, where the orbit becomes an attractive period-2 orbit. In r = 3.46
the period-2 orbit becomes unstable and is replaced by a stable period-4 orbit. We
can observe this behavior on the bifurcation diagram. As r increases this period
doubling continues. This scenario is illustrated by Figure 2 too, where the shape of
the histogram changes from a two-peaked to a four-peaked, then to an eight-peaked
form. For r = 3.57 the dynamics becomes chaotic. For r > 3.57 the chaotic and
period doubling behavior alternates. For = 3.83 there is a stable period-3 orbit. If
we study the Lyapunov exponent, this becomes zero for r = 1, r = 3, r = 3,46, etc.,
so these points are bifurcation points with this approach too.
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FIGURE 2. Histogram in the neighborhood of r = 3.5 in deterministic case

3. Perturbation with Uniformly Distributed Random Variables

Consider now the logistic map perturbed by uniformly distributed indepen-
dent random variables &g, &1,...,€n,... taking values in some interval [a,b]. The orbit

of a point zg € [0, 1] can be calculated with the formula
Tnt1 =121 —xp) + &p,n €N,

We study the bifurcation points with two different approaches: the (P)-bifurcation

and the (D)-bifurcation approach. In [4] there are some numerical results for this

case. We extend them studying the changes of the histogram for different values of r.
Firstly using Theorem 1.1 we prove that for every r € (0,4) there exists a

stationary density function.

Theorem 3.1. In case of the logistic map perturbed by uniformly distributed random

variables, for every r € (0,4) there exists a stationary density function.
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FiGURE 3. Bifurcation diagram and Liapunov exponent for a = 0

and b = 0.01

Proof. Let V(z) = |z| be a Liapunov function. Then

[ K@@ = [ lslaa =)z = [ Js-+ryla)is

r a+b
< [ Islg(s)ds + IS < V) + 57+ 1.
R
r a+b . .
soa =7 and § = 5 +1,and a < 1, if r < 4. So by Theorem 1.1 there exists a
stationary density. O

In Figure 3 we plotted the bifurcation diagram for ¢ = 0 and b = 0.01. The
Liapunov exponent is not 0 in 7 = 1, so this point is not a (D)-bifurcation point.
Studying the histogram in neighborhood of r = 1 leads to the conclusion, that this is
not a (P)-bifurcation point, too (see Figure 4). So the dynamics of the system in 7 = 1
is different as in the deterministic case, where this point was a bifurcation point. In
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F1GURE 4. Histogram in the neighborhood of r =1 for a =0, b = 0.01

r = 3 the Liapunov exponent is also not 0, but this point is a (P)-bifurcation point, as
the histogram changes its shape from a one-peaked to a two-peaked form (see Figure
5). Another (P)-bifurcation occurs between r = 3.4 and r = 3.5, where we observe
a transition from a two-peaked histogram to a four-peaked histogram (see Figure 6).
But the Liapunov exponent remains negative in this case, too.

Even if the Liapunov exponent for the deterministic case and for the small
noise case is close to each other, the behavior of single trajectories can be very differ-
ent, as the Liapunov exponent measures only the exponential of convergence (diver-
gence) of two neighboring trajectories.

It is interesting that for b > 0.05 the period doubling behavior disappears
(see Figure 7). Studying the histogram for values between 3.4 and 3.6 we observe
that the shape doesn’t become four-peaked as in the case of b = 0.01 (see Figure 8).
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F1GURE 5. Histogram in the neighborhood of 1 = 3 for a = 0, b = 0.01

4. Perturbation with Normally Distributed Random Variables

Now consider &g, &1,-.-,€n,--- t0 be normally distributed independent random

variables with mean m and variance o2.

Using Theorem 1.1 we prove that for every r € (0,4) there exists a stationary

density function.

Theorem 4.1. In case of the logistic map perturbed by normally distributed random

variables, for every r € (0,4) there exists a stationary density function.
Proof. Let V(z) = |z| be a Liapunov function. Then
[ K@Vi)ds = [ lslote - rods = [ 15+ rylg(s)ds
R R R

séwmwkHﬂM§gww+m+L
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F1GURE 6. Histogram in the neighborhood of r = 3.5 for a = 0, b = 0.01

SO a = 2 and f =m + 1 in Theorem 1.1. We have to have a < 1, so r < 4. O

In Figure 9 we see the bifurcation diagram and Liapunov exponent for m =0
and ¢ = 0.0001. Comparing with Figure 1 we see that for small noise the bifurcation
scenario is similar with the scenario in deterministic case. Here = 1 is a bifurcation
point as in the deterministic case (see Figure 10).

If the noise is bigger (¢ = 0.001) the phenomena in r = 1 is interesting.
Observe in Figure 11 that in neighborhood of 7 = 1 seems to be a chaotic region. The
Lyapunov exponent becomes positive in r = 1.

In case of 0 = 0.01 this region becomes larger (see Figure 12). The histogram
in neighborhood of » = 1 (Figure 13) also tells this, see the histograms for r = 0.9,
r = 1 and r = 1.1, where the values are spread to a large interval. Note that for
r = 1 the scale of the 0z axis is multiplied by 107! r = 3 is a (P)-bifurcation
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FIGURE 7. Bifurcation diagram and Liapunov exponent for a = 0

and b = 0.05

point, because the histogram changes its shape from one-peaked to two-peaked form,
but this is not a (D)-bifurcation, because the Liapunov exponent stays negative. It is
interesting that between 3.5 and 3.6 the Liapunov exponent changes its sign several
times (see the zoomed in part of Figure 12 in Figure 15), so these point are (D)-
bifurcation points, but the histogram doesn’t changes its shape (Figure 16), so they
are not (P)-bifurcation points.

We don’t observe the period doubling behavior in this case (Figure 17) sim-
ilarly with the case of the perturbation with uniformly distributed random variables
on the interval [a, b] for b > 0.05. So if the noise becomes bigger the period doubling
behavior disappears. It is also interesting that for » < 1.2 the points of the orbit can
have negative values too (as the random variables added can be negative), but for

r > 1.2 the points are positive.
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FI1GURE 8. Histogram in the neighborhood of r = 3.5 for a = 0 and
b=0.05

Now change the mean of the normally distributed random variables. If the
mean becomes positive the chaotic region around r = 1 disappears (see Figure 18 for
m = 0.01 and o = 0.01). If the mean becomes negative the length of the interval of
the values of r for which we get a chaotic behavior increases as the mean decreases.
In Figure 19 we observe, that for m = —0.01 the chaotic region is larger than in the

case of m = 0.
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F1GURE 9. Bifurcation diagram and Liapunov exponent for m = 0

and o = 0.0001
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F1cGURE 11. Bifurcation diagram and Liapunov exponent for m = 0

and o = 0.001
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FiGURE 12. Bifurcation diagram and Liapunov exponent for m =0

and o = 0.01
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FI1GURE 14. Histogram in the neighborhood of 1 = 3 for m = 0 and
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FiGURE 18. Bifurcation diagram and Liapunov exponent for m =

0.01 and 0 = 0.01
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