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MULTI-CLASS INFERENCE WITH GAUSSIAN PROCESSES

BOTOND CSEKE LEHEL CSATO

Abstract. A Bayesian probabilistic framework for multi-class classifica-
tion is presented. We employ Gaussian processes as latent variable models
for each of the classes and present a Bayesian inference scheme. The prob-
lem is not analytically tractable and we present approximation schemes

and assess the approximation on different problems.

1. Introduction

The problem of “recognizing” patterns mathematically is formulated as the
assignment of labels to specific inputs x. The set of labels has finite cardinality,
therefore the problem of label assignment is one of classification where the number of
classes equals the cardinality of labels.

Binary classification is thoroughly studied and well understood for several
problem domains [?]. It is easier to model the binary classification since it reduces
to assigning the sign of a function to either of the classes. For the multi-class case
it is a more difficult problem: more than two classes require to have an indicator
for each class. To avoid the multiplication of these indicators, several alternative
models have been proposed, all of them transform the single multi-class classification
into several binary classification problems and then combine the results of the binary
classifications into a single “output” [?, ?]. In this article we model the multi-class
classification. We use a probabilistic modelling and latent variables to model the class-
conditional densities. A flexible modelling strategy is the use of random functions,

namely the stochastic Gaussian processes as latent variables associated to each class.
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We present the general framework of modelling with latent variables (section
1), the models using Gaussian processes (sections 2,3) and the modelling of the multi-
class classification (section 4). The article ends with the discussion of further research

points worth to be carried out.

1.1. The Classification Problem. Let be given a set of data D = {(x;,y;) : x; €
X,y €{l,...,C},i =1,...,n} sampled independently from an unknown distribution
P(x,y) our task is to build a classifier — a function x — y where y € {1,...,C} -
which produces a reasonably small generalization error i.e. for a given new input x.,
it gives a relatively good approximation for P(y.|x«, D) where y, is in {1,...,C}.

The set D is usually called training set, the process of finding the model is
called training or learning process. In most cases there is also a set S called test
set on which we measure the performance of the model. We point out that x. may
be any point of the input space and the train—test method described above is just
a common technique and we attempt to solve a supervised learning problem — to
provide prediction for arbitrary input points x,— not a transductive one — to provide
predictions for a fixed set of input points.

It is desirable to build a classifier which produces low errors both on training
and test sets. A too low error on training set usually leads to weak prediction — high
error on the test set — performance since the model is fitted “too tight” to the training
data. This effect is known as over-fitting. Usually we expect that inputs close to each
other belong to the same class — the modelled classifier is smooth in some sense — so
it is plausible to penalize overly complex candidates which usually produce low errors

on the training set.

1.2. Probabilistic models and Bayesian inference. When building model for
data one usually postulates some structure for the hidden mechanism that supposedly
produced it — depending on the nature of the problem at hand. This assumption leads
to the introduction of hidden or latent variables — u from now on — and the assumption
that the outputs y and the inputs x are conditionally independent given u. There
may be various practical motivations for modelling with hidden variables like: it is
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easier to introduce smoothness criteria and it is easier to model P(y|u) and P(u|x)
independently than modelling the relation P(y|x) — the relation between x and y —

directly. This assumption can be written in the form:

P(y1x) = [ Plylu)P(uf)du.

One postulates the model by specifying the distributions P(y|u) and P(u|x).

The distribution P(y|u) is usually called noise distribution/model or random
component and it expresses our belief about how the hidden wvariables produce the
output y. There are two ways of defining the prior distribution P(u|x) of the hidden
variables: (1) in a parametric manner: u(x;w) is a parametric function and we place
some prior distribution P(w) on parameters w which usually have a low dimensionality
not depending on the cardinality of the data sets (2) in a non-parametric manner: we
place a prior P(u|x) directly on u(x). If u(-) is a Gaussian Process then it is specified
by its mean value and covariance function.

In some cases P(ylu) and P(u|x) depend on further parameters 6 called
hyperparameters, they control characteristics like parameters of the distribution P(w)
or parameters of functions which define u(-). Smoothness criteria — mentioned a few
paragraph earlier — may be expressed by the priors placed on u(-) or u(-;w) (a prior
on w) assigning low probability to models leading to overly complex functions. We
shall see later — sections 2.1 and 3.1 — how these probabilities control the smoothness
of the model.

In this text we are concerned with non-parametric models and in the following
we shall present how the Bayesian machinery — repeated application of Bayes’ rule
(see for example So6s [?]) in a hierarchy — can be put in work in such cases.

In order to make predictions one has to calculate the posterior probability of

the hidden variables at training input locations. Denoting them by u(Xp) we have:

P(u(Xp)|D) < P(D|u(Xp))P(u(Xp))
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and using the assumption that y and z are conditionally independent w.r.t 4 one gets:
P(u|x4, D /P w|u(Xp))P(u(Xp)|D)du(Xp). (1)

and
P(y«|x«, D) = /P(y*|u*)P(u*|x*,D)du*.

where we have denoted by x, the input location where the prediction needs to be
done, u, = u(x.) the value of the latent variable at this location and by y. the
predicted output variable.

When hyperparameters are involved, one uses a second level inference. One
has to weight the prediction distributions P(y.|x., D, ) with the suitability of the
model with parameter §. This suitability is usually measured by the posterior distri-

butions of 6:

P(|D) x P(8)P(D|§) 2)

% P(6) [ PDIu(XD).6)P(u(Xp) B)du(Xp).

When the cardinality of the training data is sufficiently large, then P(6|D) is
highly peaked around its mode 6 .This means that the posterior is unimodal, therefore
it is a common practice to substitute it by 69~70. This method is called mazimum
likelihood II and the prediction we obtain using this method is called mazimum a-
posteriori (MAP) approximation. Using the Bayesian approach one has to sum over

all possible parameters and gets:

P(y.fo..D) = [ Ply.lo..0)P(6ID)

The process of learning is realized trough Bayesian estimations i.e. it means the

updating of model parameters from the priors P(6) to posteriors P(6|D).

2. Modelling with Gaussian Processes

When modelling with Gaussian Processes (GPs) we place a Gaussian process
prior on the random function u, thus the hidden variable/function has the property
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that for any collection of possible different inputs X = {x},...,x},} C X the ran-

!

' )T is a Gaussian random vector. The process

dom variable u(X) = (u(x}),...,u(x
is determined by its mean value function m(x) = E[u(x)] and covariance function
K(xx') = E[(u(x) — m(x))(u(x') — m(x'))] which is a positive definite symmetric
function, thus ”producing” valid covariance matrices for any finite dimensional dis-
tribution.

Gaussian processes have long been studied in probability and statistics and
used for various problems in nonparametric estimation but they have been “rediscov-
ered” by the ML community only a decade ago when Neal [?], Williams and Ras-
mussen [?] showed that the output distribution of a simple two layer Bayesian Neural
Network with increasing number of hidden units converges to a Gaussian process.
Their nonparametric nature makes them relatively insensible to data dimensionality
and reasonably complex models can be built with a few number of hyperparameters
only. Being a nonparametric method smoothness conditions can be imposed by the
choice of covariance function as it was pointed out by Parzen [?] then later on by
Kimeldorf and Wahba [?], therefore Gaussian Processes are a tempting device for
attacking ML problems.

Let Xg with XsNXp = 0 be a set of test “locations” where estimations needs
to be done and let us denote Xp = {x1,...,%,} the set of training input locations
and u = u(Xp) = (u(x1),...,u(x,))T the hidden variable vector at the training
input points.

Applying the Bayesian model presented above one gets:
P(u(Xs)|Xs,D) = /P(u(Xs)|u)P(u|D)du.

For notational simplicity we shall use from now on the notation P(u.|D) for
P(u(Xs)|Xs,D), — whenever it is unambiguous — expressing that Xg is arbitrary
and that we do not consider modelling P(x). The process resulting form the finite
dimensional distributions P(u(Xgs)|Xs, D) is called posterior predictive process and

we shall sometimes call it simply: posterior process.
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2.1. Gaussian process regression with Gaussian noise. The simplest proba-
bilistic model using Gaussian process as hidden function is the regression problem
with zero-mean Gaussian noise P(y|u) ~ N(y;u,0?), which has an analytically easily
tractable formalism. We assume that the “hidden function” is a Gaussian random
function having a priori zero mean and a covariance K. For notational simplicity
let us denote u; = u(x;), y = (v:)i, k(x) = (K(x,%;))i; ke = K(X4,%4) and the
covariance matrix at training input locations K = (K (x;,%;)):; ;. Employing again

the Bayesian formalism presented above one gets the posterior distribution
P@D) o []Pilu)P()
i
= N(K(*I+K) 'y,o’(¢’I1+K) 'K)
and thus obtaining the predictive distribution:

P(u.|D)

/ P(u.|u) P(u|D)du (3)

N (us kT (x)(K 4+ 0?I) ty, ke — kT (%) (K + 0%I) k() . (4)

leading to a Gaussian predictive process u(-)|D with
Eu()|D] = K (x)(o*I+K) 'y
Cov[u(x),u(x')|D] = K(x,x') -k (x)(c’T+K) k(x').
We remark that denoting w = (¢2I+ K) 'y — which is independent of x, — we have:
Efu(x)|D] = w'k(x) = Y w; K (x,x;).

Analyzing equation (5) we notice that the point-wise predictive variance is smaller
than the prior variance.

Using an arbitrary noise model — changing the noise distribution P(y;|u(x;))
— we might generalize this Gaussian process regression model but P(u(-)|D) is not
Gaussian anymore, not is the point-wise predictive distribution and posterior predic-
tive process. Using a fixed covariance function is not generally useful for practical
purposes, because it’s nature affects the “quality” of the approximation and predic-
tion we obtain. Since the posterior mean value is a linear combination of functions
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K (x,x;), choosing fast or slow decaying covariances may lead to poor approximations.
With parameterized covariance function we may get better control over the flexibility
of the functions/processes in issue. Due to ease in identifying its parameters role the

square exponential
1 e
K(s,t) = b+aexp(—§z‘:vi(sz — ")) (5)

is one of the most often used covariance functions in machine learning GP models.
Figure 2.1 shows how the choice of the so called scale parameters v; control the pos-
terior mean value. (We may use 6§y = (log(b),log(a), (logv;);) as covariance function
parameter.)

Because P(6|D) is not a Gaussian, the predictive distribution given in equa-
tion (2) is not analytically tractable and instead, finding a M LII value or sampling
methods (ex. Markov Chain Monte Carlo, Hybrid Monte Carlo) — from P(6|D) —
must be employed for carrying out the integration numerically. Both of these may be

done by using the log-likelihood:
" _n oyl _ 1o 27y —1
log P(D|6) = 5 log(27) 5 log |K + ¢”1| 5y (K +0°T)ly. (6)

The key of the relative ease in formalism of the regression problems is the
closeness property of the Gaussian distributions function regarding multiplication
and division. Gaussian likelihoods are able to model only a small proportion of real
word problems but Gaussian processes can model a large variety of functions — for
example the class of posterior mean value functions when a parametrized exponential
covariance is used — therefore it worths to keep the function class and develop methods

for a wider or arbitrary class of likelihoods, see Csaté [?].

3. Approximate inference

As we have pointed out in the previous section non-Gaussian noise distribu-
tions are the ones which “break” the analytical tractability of the Bayesian model
for GPs. Taking account that in cases when the log-likelihood log P(D|u) is concave
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F1GURE 1. An illustration of overfitting and smooth fitting on noisy
data generated by the sinc function (left) as well as the GP regression

posterior mean and variance (right).

the posterior is unimodal it seems a good solution to approximate non-Gaussian pos-
teriors with Gaussian ones. In the followings we shall present a few variants of this

approach.

3.1. Binary classification using Laplace approximation. The main idea is to
transform the classification problem into a regression one and the interpret the ob-
tained results. Let y; € {0,1} and assume that if x; belongs to class Cy then y; = 0.
We model the problem in the following way: we shall transform the output i.e. the
process u to the interval [0, 1] with a suitable function o and we shall interpret o(u(x))
as P(x € C}) - the probability of x belonging to the class C; denoted by the 1 val-
ues of y;-s. We use the function o(z) = e*/(1 + €%), thus our goal is to approximate
P(o(u(x))|D) at a fixed point x. For notational simplicity we demote 7(x) = o(u(x)).
To apply the Bayesian treatment presented in the previous section one must postulate
the corresponding conditional densities P(y;|u(x;)). Assuming m(x)-s are probability
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of success for the Bernoulli random variables y and the samples (x;,¥;) are indepen-

dent:
P(Da) = Hﬂ(xi)yi(l — m(x;)) .

Since in this case the posterior process is not a Gaussian, Williams and Barber [?]
propose a Gaussian approximation for the posterior process. Using Laplace’s method
they approximate P(u(x.),u|D) by a Gaussian at it’s mode, then they marginalize
and obtain P(u(x,)|D) and so the last step remains the calculation of P(w(x,)|D).
Applying Bayes’ rule one gets:

log P(us,u|D) = logP(yluy)+ log P(us) —log P(D).

n
= y'u-— ;log(l +e") — %u+TKJ_rlu+ - %log K| +c

where K is the extended — with k(x.) and K (x4,X,) — covariance matrix and u; is
the extended hidden variable at inputs x1,...,Xy,X.. One may easily verify that at
the maximum — Vy, log P(uy|D) = 0 — we have (us)maz = k” (x.) K™ 0, Where
Wpna, = argmax,, P(u|D).

Denoting by 4|D the approximating Gaussian process of the posterior process
where approximation is understood in the sense presented above: Laplace’s method

— one gets:
@(x)|D ~ N (k" () K™t K ((x), (x)) — k' (x) (I + WK) " Wk(x))

and we have used the notation W = —(VV?T),log P(D|u)|u=u,,..
When parameterized covariance function is used we obtain the likelihood

approximation
1
log P(D|6) ~ log P(umqaz|D) — 3 log K™ 4+ W(unaz)| + ¢

This can be used for sampling from P(#|D) to carry out the Bayesian averaging or
hyperparameter optimization.
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3.2. Expectation—propagation. When using non-Gaussian likelihoods the poste-
rior process is not Gaussian which makes the estimation of predictions analytically
intractable. The finite dimensional distributions of the posterior process may be writ-
ten similarly to equation (1), meaning that, in order to get a Gaussian posterior we
should approximate the non-Gaussian P(u|D) with a Gaussian ((u) and define the
Gaussian approximation of the posterior process defined by the finite dimensional

distributions
Q) = [ Pluw@(wd

In section 3.1 Laplace approximation has been applied to approximate the posterior
process for the binary classification problem. Another plausible way to approximate
the posterior is to find the Gaussian which minimizes the K L distance (see for example

Cover and Thomas [?]) defined by

P(u|D

piPiD) Q] = [ 1 |72 puip)du

Because
D[P(us, u|D)||Q(ux, u)] = D[P(u|D)[|Q(u)]

and the minimization boils down to second and first order matching between P(u|D)
and Q(u), see Opper [7].

The Ezxpectation Propagation (EP) method developed by Minka [?] proves
to be an efficient method for doing KL-type approximate inference in probabilistic
models using factorizing likelihoods, because the properties of KL distance endow EP
with a particularly important local property in cases when the factors depend only on
a few components of the hidden variable vector (a few number of hidden variables).

We shall present this method in the context of GP models. A complete
and general exposition is found in Minka [?]. The main idea of EP consists in a
novel interpretation of the Assumed Density Filtering (ADF) method. Supposing a
factorizing likelihood P(D|u) = [], ti(u) - t;(u) standing for P(y;|/u) — and a prior
P(u), EP approximates the posterior P(u|D) by a distribution Q(u) = P(u) [], t;(u),
thus approximating each “component” of the likelihood — also called sites — by an
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“easy to handle” distributions — in our case low dimensional Gaussians. It does this
in the following way:
(1) the algorithm usually starts assuming Q(u) := P(u) thus setting #; := 1
(2) at each step a chosen — arbitrary or by other way — #;(u) is removed from
Q(u) resulting:
QV(w) ~ P(u) [ #;(w)
J#i
(3) it infers P(u) ~ Q\{(u)t;(u) and
(4) approximates P(u) by Q™¢* (u) such that #;(u) ~ Q™¢* (u)/Q\(u) belongs
to the assumed family.
Following steps (2-4), EP updates the influence of site ¢;(u).The repetitions of these
steps lead to good approximations although convergence is not guaranteed.

Taking in consideration the closeness properties of the Gaussian family EP
seems a well suited method for approximating P(u|D) because we only have to choose
t;(u) and Q™% (u) as Gaussians densities to “make” this method “work”.

Now suppose t;—s depends only on a subset of parameters say I; C {1,...,n}
and let R; = {1,...,n}\I; — both ordered — then t;(u) = ¢;(uy,). When updating #;

one has
Pu) o QV(u)t;(ug,)
o QV(ug,lug,)QV (uy,)ti(uy,)

o8 Q\i(uRi uIi)P(uIi)

and has to minimize

DIP(u)||Q"*(w)] = D[P(uy,)

|Qnew (uIi)]

+EU11- ~P(ur,) D [Q\l (uRi

uIi)

UL-)]]

As the minimum of the positive second term of the left hand side is 0 when
Q\i(uRi uIi) = Qnew(uRi

the minimizations means finding the moments up to second order of P(uli) x

uz,) and this puts no constraint criteria on the first term
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Q\i(uli)tu(uli) leading to Qnew(u) = Q\i(uRi

proximation #;(u) = #;(uz,) o< Q"% (uy,)/Q\(uy,) depends on the same set of hidden

ur, )Q""(uy,) and so the site ap-

variables as its corresponding site. Now its is easy to show that Q™" (ug,

uy) =
Q(ug,|uy,) and thus the update step has a local nature.

Assuming that Q(u) = N(u;h, A) the a approximation if the first two mo-
ments of ¢;(uz,)Q\(uz,) cannot be done analytically and we employed Gauss-Hermite
quadrature method — see for example Coman [?]. Applying change of variables one can
factorize the weight function N (uy,; [h\{];,,[A\Y];,) in order to get a tractable quad-
rature formula. Let x and w be the d-th order Gauss-Hermite nodes and weights of
N(+0,1) and ¢ an element of the Descartes product {1,...,d}!"il. Using a Cholesky
decomposition [A\];, = LL?, and denoting m = [h\];,, the approximation formula

for the normalization constant of ;(uy, )N (uy,; [h\];,,[A\]},) is given by:

Z; ~ ZHU}{T t;(Lx, + m)

o
and thus the approximation of first and second moments is straightforward. Unfor-
tunately this quadrature method scales exponentially in |I;| which makes is practical
only for very small values only.
Although we have used the minimization of the KL distance as approximation
method, in order to avoid calculation of moments we can use a “hybrid” method: to
do the last step of local approximation with a Laplace-type approximation which is

plausible if ¢;(uz,)Q\!(uy,) is strictly log-concave in uy,:

. 1 _
m =~ argmax, {log(ti(uji)) — E(uh - m)TV Yuy, — m)}

<
12

(wev)”

1 1 .
logZ; =~ log(t;(m))— §(ﬁ1 ~m)"V~' (- m) - 3 log I+ WV]|

where W = —(VVT)u,i ti(ur,)
Newton-Raphson method and it takes roughly O(|I;|3) time.

uy,=rn- The approximation can be done with a
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4. An approach to multi-class problem

In the followings we present the extension of binary classification problem to
multiple classes. We use the representation of Barber and Williams [?] to build the
model.

In order to avoid dealing with a great number of data resulting from a multi-
output Gausssian process one can model the C-class case by choosing C independent
priors and taking account only their posterior cross-correlations which is realized
trough the coupling(s) in the likelihood terms. In order to avoid confusions we settle
first some notational conventions: the subscript indexing is used for referring to input
locations while the upper indexing is be used for referring to class type indexing —
w; = (ub,u?,...,uf) and ul® = (ugc),uéc), e ,u,(f)), we use u = (u, u®, ... ul®)
and the corresponding prior covariance matrix K = diag(K(©)),.

As we have seen the two-class case, finding a likelihood term for finite number
of outputs is not an easy task and one of the easiest ways to solve the problem is
to turn it into a regression-like one. A multi-dimensional extension of the logistic
function, the softmaz function 7(u) = exp(u)/17 exp(u) is used to model the class

probabilities. Modelling y; belonging to class ¢ by y; = e. one defines the likelihood:

P(ylu) = y"n(u).

The likelihood log P(y|u) is not strictly log-concave — due to 177 (u) = 1 it is strictly
log-concave only on {1}*. This could constitute a risk to the approximation in cases
when the local marginals of the likelihood approximations collapse or are close to it
since both of the approximations processes presented above — minimization of KL
distance and Laplace method — rely on this property.

In order to apply the EP procedure presented earlier we set the (site) likeli-
hood:

ti(u;) = P(yilwi) = (7(wi)).
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where ¢ is the nonzero element of y; and the use site approximations #;(u;) ~
N(u;;m;, V;). Using the notation V. = (diag(VZ(-s’t))i)m:l,___,c the Gaussian ap-
proximation of the posterior P(u|D) has the covariance K — K(K + V)~1K and

mean value (I + VK~1)~1(m(%)., thus the the prediction u, is normal with:

E[u.|D] K'(V+K)"'(m9),

Cov[u|D]

diag (K(C) (x4, x*)) “KT(V+K) 'K,

where we used the notation K, = diag (k(C) (x*))c. In order to calculate the in-

tractable P(y. = ¢|x., D) one has to apply once again numerical quadrature formulas.

5. Experiments

We implemented the two local approximation methods described in section 3.
We built upon the OGP toolbozx developed by Csaté (see, [?]) which was implemented
based on Csat6 and Opper [?] and is publicly available with full documentation. The
OGP toolbozx provides a sparse approzrimation method for a variety of likelihoods —
user defined ones as well. This makes the toolbox easily applicable for artificial or real
world problems that employ Gaussian Process models. The Gauss-Hermite Quadra-
ture rule was ran using 7 nodes. Increasing its order did not lead to a significant
change in accuracy. In fact fewer nodes proved to be suitable, the reason for it might
be the good convergence properties of the Taylor expansion of the likelihood function.
Heuristics like employing the symmetry property of nodes and weights when using
Gauss-Hermite quadrature formulas — as it was pointed out by Seeger and Jordan [?]
— can be used but significant improvement in time-performance cannot be achieved
without further making use of the likelihood structure. However, factorizing likeli-
hood sites, or likelihoods that speed up the Gaussian quadrature routine might lead
to worse performance because of weak couplings in the variables of the likelihood.

The “local” Laplace method was implemented using Newton-Raphson

method for a = V~!(s — m) with the update equation

a™ = (I+ WV) " (WVa+7(s) —e.)
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where we have used the notations from section 3. In each step we have used BiCG
(implemented in Matlab) to solve the linear system. The method takes around
O(npicgnn,rC?) time where np;c, and ny, are denoting the number of BiCG resp.
Newton-Raphson steps.

The plots on figure 5 show the error rates we achieved on a 3-class data set
using a spherical (the scaling parameters v; are equal) square exponential kernel from
equation 5. We implemented hard classification rules i.e. an item belongs to the class
which has the greatest probability — this was done in order to compare our results with
the benchmark 5NN classifier. For real world problems however, one could exploit the
multi-output probabilistic outputs returned by the system — the freedom of choice is
significantly more.

The basis for comparison was the 5NN rule. The data was generated in the
following way: we generated from 9 Gaussians with mean values chosen randomly
from [0, ...,10]* and labelled these randomly. The resulting data were preprocessed:
we whitened the data. We used 1000 samples splitting them in 1/2 train/test ratio.

Figure 5 shows hard-classification boundaries on a data set of 250 examples.

6. Conclusions/Further research

The presented methods outperformed 5NN in cases when the scaling param-
eters did not have extreme values. We aim to further develop and implement hyper-
parameter optimization methods, as well as approximations for posterior probabilities
to be used with Markov Chain Monte Carlo, Hybrid Monte Carlo type methods for a
“complete” Bayesian inference like in section 1 to integrate out the posterior process
and the hyperparameters from the model. Our interest in developing further local

approximation methods is still active.
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FI1GURE 2. Hard classification discriminant curves for a 3-class case
with 250 samples.
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F1GURE 3. Performance of a multi-class GP methods with spherical

square exponential kernel on data set with 3 classes.
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