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THREE WAYS OF DEFINING THE BIVARIATE SHEPARD

OPERATOR OF LIDSTONE TYPE

TEODORA CĂTINAŞ∗

Abstract. In this paper they are given three possible definitions of the

bivariate Shepard operator of Lidstone type. Also, there are given error

estimations for the corresponding interpolation formulas.

1. First variant of the Shepard operator of Lidstone type

Let f be a real-valued function defined on X ⊂ R
2, (xi, yi) ∈ X, i = 0, ..., N

some distinct points and ri (x, y), the distances between a given point (x, y) ∈ X and

the points (xi, yi) , i = 0, 1, ..., N .

First, we consider the original bivariate operator introduced by Shepard in

1968. This operator is defined by:

(SN,µf)(x, y) =
N

∑

i=0

Ai(x, y)f(xi, yi), (1)

where

Ai (x, y) =

N
∏

j=0
j 6=i

rµ
j (x, y)

N
∑

k=0

N
∏

j=0
j 6=k

rµ
j (x, y)

, (2)

with µ ∈ R+.

The functions Ai, i = 1, . . . , N have the cardinality properties:

Ai(xν , yν) = δiν , i, ν = 1, . . . , N,
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and
N

∑

i=0

Ai (x, y) = 1. (3)

The main properties of SN,µ are:

1. the interpolation property:

(SN,µf) (xi, yi) = f (xi, yi) , i = 0, 1, . . . , N

2. the degree of exactness is:

dex (SN,µ) = 0.

Consider a, b, c, d ∈ R, a < b and c < d and let ∆ : a = x0 < x1 < . . . <

xM+1 = b and ∆′ : c = y0 < y1 < . . . < yN+1 = d denote uniform partitions of [a, b]

and [c, d] with stepsizes h = (b − a)/(M + 1) and l = (d − c)/(N + 1), respectively.

Further, let ρ = ∆ × ∆′ be a rectangular partition of [a, b] × [c, d].

In [4] it was introduced the bivariate Shepard operator of Lidstone type, using

the classical definition of the Shepard operator (1).

For a function f ∈ C2m−2[a, b], according to [1], the Lidstone interpolant uni-

quely exists and it is of the form

(L∆
mf)(x) =

M+1
∑

i=0

m−1
∑

µ=0
rm,i,µ(x)f (2µ)(xi), (4)

where rm,i,j , 0 ≤ i ≤ M + 1, 0 ≤ j ≤ m − 1 are satisfying

D2υrm,i,j(xµ) = δiµδ2υ,j , 0 ≤ µ ≤ N + 1, 0 ≤ υ ≤ m − 1. (5)

On the subinterval [xi, xi+1], 0 ≤ i ≤ M, the polynomial L∆
mf can be explicitly

expressed as

(L∆,i
m f)(x) := (6)

:= (L∆
mf)|[xi,xi+1](x) =

m−1
∑

k=0

[

Λk

(

xi+1−x

h

)

f (2k)(xi) + Λk

(

x−xi

h

)

f (2k)(xi+1)
]

h2k,

where Λk is the Lidstone polynomial of degree 2k + 1, k ∈ N. In analogous way it is

obtained the expression of L∆′,i
m f, corresponding to ∆′.
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For a function f ∈ C2m−2,2m−2([a, b] × [c, d]), the bivariate Lidstone

interpolant Lρ
mf uniquely exists and can be explicitly expressed as

(Lρ
mf)(x, y) =

M+1
∑

i=0

m−1
∑

µ=0

N+1
∑

j=0

m−1
∑

ν=0
rm,i,µ(x)rm,j,ν(y)f (2µ,2ν)(xi, yj), (7)

with rm,i,j , 0 ≤ i ≤ M + 1, 0 ≤ j ≤ m − 1 given by (5).

Lemma 1. [1] If f ∈ C2m−2,2m−2([a, b] × [c, d]) then

(Lρ
mf)(x, y) = (L∆

mL∆′

m f)(x, y) = (L∆′

m L∆
mf)(x, y).

Corollary 2. [1] For a function f ∈ C2m−2,2m−2([a, b] × [c, d]), from Lemma 1, we

have that

f − Lρ
mf = (f − L∆

mf) + L∆
m(f − L∆′

m f) (8)

= (f − L∆
mf) + [L∆

m(f − L∆′

m f) − (f − L∆′

m f)] + (f − L∆′

m f).

We recall that the k−th modulus of smoothness of f ∈ Lp[a, b], 0 < p < ∞,

or of f ∈ C[a, b], if p = ∞, is defined by (see, e.g., [11]):

ωk(f ; t)p = sup
0<h≤t

∥

∥∆k
hf(x)

∥

∥

p
,

where

∆k
hf(x) =

k
∑

i=0

(−1)k+i
(

k
i

)

f(x + ih).

In what follows ‖·‖ detones the uniform norm over the corresponding interval.

We have some error bound for the bivariate Lidstone interpolation, that is

useful in what follows. It is obtained based on some results from [5].

Theorem 3. If f ∈ C2m−2,2m−2([a, b] × [c, d]) then

‖f − Lρ
mf‖ ≤

(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[c,d]

ω2m

(

f(·, y); b−a
2m

)

(9)

+
(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[c,d]

ω2m

(

(f − L∆′

m f)(·, y); b−a
2m

)

+
(

1 + ‖L∆′

m ‖
)

W2m max
x∈[a,b]

ω2m

(

f(x, ·); d−c
2m

)

,

where Wk is Whitney’s constant.
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The bivariate Shepard operator of Lidstone type is given by:

(SLif)(x, y) =
N
∑

i=0

Ai(x, y)(Lρ,i
m f)(x, y), (10)

where Lρ,i
m f is the restriction of Lρ

mf , given by (7), to the subrectangle [xi, xi+1] ×

[yi, yi+1], 0 ≤ i ≤ N.

We have the bivariate Shepard-Lidstone interpolation formula,

f = SLif + RLif, (11)

where RLif is the remainder term.

Estimations of the remainder of this interpolation formula were obtained by

us in [4] and [5].

2. Second variant of the Shepard operator of Lidstone type

For a function f : [0, 1]×[0, 1] → R we consider the bivariate Shepard operator

as a tensor product [13]:

(SM,Nf)(x, y) =

M
∑

i=0

N
∑

j=0

si,λ(x)sj,µ(y)f
(

i
M

, j
N

)

, (12)

where λ, µ > 1 and

si,λ(x) =

∣

∣x − i
M

∣

∣

−λ

M
∑

k=0

∣

∣x − k
M

∣

∣

−λ
,

sj,µ(y) =

∣

∣y − j
N

∣

∣

−µ

N
∑

k=0

∣

∣y − k
N

∣

∣

−µ
.

If we denote as in [13], by SM,λ(f, ·) the univariate Shepard operator regarding a

univariate function f we have that

(SM,Nf)(x, y) = SM,λ(f, x)SN,µ(f, y).
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For a function f ∈ C2m−2,2m−2(D), m ∈ N, the Shepard operator of Lidstone

type corresponding to (12), is defined by

(SLi
M,Nf)(x, y) =

M
∑

i=0

N
∑

j=0

si,λ(x)sj,µ(y)(Lρ,i,j
m f)

(

i
M

, j
N

)

, (13)

where Lρ,i,j
m f is the restriction of Lρ

mf , given by (7), to the subrectangle [xi, xi+1] ×

[yj , yj+1], 0 ≤ i ≤ M, 0 ≤ j ≤ N.

The corresponding interpolation formula is

f = SLi
M,Nf + RLi

M,Nf,

where RLi
M,Nf denotes the remainder.

Further we give some error bounds for this interpolation procedure. First,

we recall some known results.

Theorem 4. [5] If f ∈ C2m−2[a, b] then

‖f − SM,λ(f, x)‖ ≤ (1 +
∥

∥L∆
m

∥

∥)W2mω2m

(

f ; b−a
2m

)

. (14)

Theorem 5. For any f ∈ C2m−2,2m−2(D) and µ > 2 we have

∥

∥f − SLi
M,Nf

∥

∥ ≤
(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[0,1]

ω2m

(

f(·, y); 1
2m

)

(15)

+
(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[0,1]

ω2m

(

(f − L∆′

m f)(·, y); 1
2m

)

+
(

1 + ‖L∆′

m ‖
)

W2m max
x∈[0,1]

ω2m

(

f(x, ·); 1
2m

)

.

Proof. By Corollary 2 and taking into account (13) it follows that

∥

∥f − SLi
M,Nf

∥

∥

C[0,1]
= ‖f − SM,λf‖

C[0,1]

+
∥

∥

∥
(f − L∆′,i

m f) − SM,λ(f − L∆′,i
m f)

∥

∥

∥

C[0,1]

+ ‖f − SN,µf‖
C[0,1] .

and from (14) we obtain (15).
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3. Third variant of the Shepard operator of Lidstone type

In [13] was introduce another type of the bivariate Shepard operator which has

good approximation properties and better global smoothness preservation properties

then that defined by (1). It is defined by

SM,N (f ;x, y) =
TM,N (f ;x,y)
TM,N (1;x,y) ,

with µ > 0, f : D → R, D ⊂ R
2, D = [0, 1] × [0, 1], xi = i/M, i = 0, ...,M ; yi = j/N,

j = 0, ..., N and

TM,N (f ;x, y) =
M
∑

i=0

N
∑

j=0

f(xi, yj)

[(x − xi)2 + (y − yj)2]µ
.

For a function f ∈ C2m−2,2m−2(D), m ∈ N, the corresponding Shepard

operator of Lidstone type is given by

(SLi
M,Nf)(x, y) =

T Li
M,N (f ;x,y)

TM,N (1;x,y) , (16)

with

TLi
M,N (f ;x, y) =

M
∑

i=0

N
∑

j=0

(Lρ,i,j
m f)(xi,yj)

[(x−xi)2+(y−yj)2]µ
,

where Lρ,i,j
m f is the restriction of Lρ

mf , given by (7), to the subrectangle [xi, xi+1] ×

[yj , yj+1], 0 ≤ i ≤ M, 0 ≤ j ≤ N.

Theorem 6. [13] For any f ∈ C(D) and µ > 3/2 we have

‖f − SM,N (f)‖ ≤ cω(f ; 1
M

, 1
N

), (17)

where

ω(f ; δ, η) = sup{|f(x + h, y + k) − f(x, y)| : 0 ≤ h ≤ δ, 0 ≤ k ≤ η}.

Using Theorem 6 we can give some error bounds.
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Theorem 7. For any f ∈ C2m−2,2m−2(D) and µ > 3/2 we have

∥

∥f − SLi
M,Nf

∥

∥ ≤cω(Lρ
mf ; 1

M
, 1

N
) +

(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[0,1]

ω2m

(

f(·, y); 1
2m

)

(18)

+
(

1 +
∥

∥L∆
m

∥

∥

)

W2m max
y∈[0,1]

ω2m

(

(f − L∆′

m f)(·, y); 1
2m

)

+
(

1 + ‖L∆′

m ‖
)

W2m max
x∈[0,1]

ω2m

(

f(x, ·); 1
2m

)

.

Proof. We have

∥

∥f − SLi
M,Nf

∥

∥ ≤ ‖f − Lρ
mf‖ +

∥

∥Lρ
mf − SLi

M,Nf
∥

∥

and by (16) and (17) we obtain

∥

∥f − SLi
M,Nf

∥

∥ ≤ ‖f − Lρ
mf‖ + cω(Lρ

mf ; 1
M

, 1
N

).

By (9) it follows (18).
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[2] T. Cătinaş, The combined Shepard-Abel-Goncharov univariate operator, Rev. Anal.
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[5] T. Cătinaş, Bounds for the remainder in the bivariate Shepard interpolation of Lidstone
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