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EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER
GH. ATANASIU N. VOICU

Abstract. In [7], R. Miron and Gh. Atanasiu wrote the Einstein equa-
tions of a metric structure G' on the tangent bundle of order two, T2M
(previously named ”2-osculator bundle” and denoted by Osc? M), endowed
with a nonlinear connection N and a linear connection D such that the
2-tangent structure J be absolutely parallel to D.

In the present paper, the authors determine the Einstein equa-
tions by making use of the concept of N-linear connection defined by Gh.
Atanasiu, [ 1], this is, a linear connection which is not neccesarily compati-
ble with J, but only preserves the distributions generated by the nonlinear

connection N.

1. The Tangent Bundle T?M

Let M be a real n- dimensional manifold of class C>, (T?M, x2, M) its second
order tangent bundle and let T2M be the space T2 M without its null section. For a
point u € T?M, let (2%, ye, y(2)“) be its coordinates in a local chart.

Let N be a nonlinear connection, [3, 8-13], and denote its coefficients by

<]}7g, ];]g), a, b=1,...,n.Then, N determines the direct decomposition

T.T*M = No(u) ® Ny (u) ® Va(u), Yu € T>M. (1)
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The adapted basis to (1) is (d4,014,02,) and its dual basis is
(dz®, 5yMe, 5y where

R .0
0a= §pa = ggn Yo Gye N g,@e
5 9 o0
Ole = 5 = gya ~ Nagyme 2)
S0
2a W7

respectively,

5y(2)a — dy(Q)a + ]\ggdy(l)c + ]\242(11,07
where ]\14 o ]\2{[ ¢ are the dual coefficients of the nonlinear connection N.

Then, a vector field X € X (TQM ) is represented in the local adapted basis

as
X = XOag, 4 xWeag, 4 xPag,, (4)

with the three right terms (called d-vector fields) belonging to the distributions N,
N7 and V; respectively.
A 1-form w € X* (T2M) will be decomposed as

w=wWdz® +wDsyMe 4 )2 gy 2a

Similarly, a tensor field T € 7" (T®M) can be split with respect to (1) into compo-
nents ,which will be called d-tensor fields.

The F (T2M)-linear mapping J : X (TQM) — X (TQM) given by
J (8a) = 01a; J (614) = 24, J (24) = 0 (5)

is called the 2-tangent structure on T*M,[8-13].

2. N-linear connections. d-tensors of curvature

An N-linear connection D, [1], is a linear connection on T2M, which pre-
serves by parallelism the distributions N, N7 and V5. Let us notice that an N-linear
connection, in the sense of the definition above, is not necessarily compatible to the
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2-tangent structure J (an N-linear connection which is also compatible to J is called,
[1], a JN-linear connection).

An N-linear connection is locally given by its coefficients

Dr (N) = , ¢ abcv C ab ¢ abcv ¢ abc) ’ (6)

L. L. L%, C?%. ce.

((00) ber 10y P 20y *¢7 (01) ¢ (11) P (21) P (02) b7 (12) ¥ (22)

where

Ds. 6y = L% 80 Ds.61p= L% 610, Do 0oy = L 6o
6.9 (00) be 6.91b (10) be?1 5.02b (20) beV2

Ds 0y = C % 64, Ds, 01 = C % 614, Ds, 0op = C % 6oq .
6190 (1) be 01910 (11) bc¥1 61920 (21) b2 (7)

Ds, 0p = C % 04, Ds, 616 = C 4 014, Ds,.020 = C % 024
52.9b (02) be 62.91b (12) be 1 82.92b (22) be 2

In the particular case when D is J-compatible, we have

a ) — a — L a = LU. ,
(00) b¢ 10 ¥ o) b be

‘ C = ‘ C = C K (& = Ca C?
(o1) ' en ot

a — a — C a — Ca .
(02) be (12) be (22) be (2) be

For an N-linear connection, let
DYY = DxnY™, 103351/ = Dyw Y1, Q)ng = Dxw Y1
zﬁagy = DxnYV5, Q)ng = Dyw YV5, Q)ng = DywY"s,

B=1,2.

DH D', DYz are called respectively, ha-, V1a- and vaoe-covariant derivatives, o =
« « «

0,1,2. In local coordinates, for a d-tensor field
T =155 (29,5 ®) by © o 20, @ da” @ o Gy,

we have

DYT = XOM T Gay @ ® 0q, @ dz® @ ... @ 5y 20,
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where
Ta1 = 4 Ta1 a7 + L a1 Thag...a,,.+ L a, Ta1 ar 1h
if b (a0) " ‘(a0) "
h ay...a, h ay...a,
_(ao) bim hl;g...bs e (({6) bsmell.--bS—lh'
and
DYer — x(Wmpai...ar (T) 5 ®..906 b 50 (2)bs
Ex 1 = bi..bs am Oap @ ... ®02q, Az ® ... Q0Y
where
ay...a, ) 5 ai.. a7 a1 hag...a,,, ﬂ ..ar_1h
Tyt o | am sm Ty 0+ C Y S o C hm T, "y, -
- C };; R ces T C b ar .
(aB) 1m~ hby...bs aB) m b1 bsflh

The curvature of the N-linear connection D,
R(X,Y)Z = DxDyZ — DyDxZ — Dix y)Z

is completely determined by its components (which are d-tensors) R (64i,08k) 0aj-
Namely, the 2-forms of curvature of an N- linear connection are, [1],

1
0% == R, %dz° ANdx? + P %dx ASyMd+ P 2 dat A sy P4 (8)
(a) 2 (0 (1a) (2a)

1
3.3, peady” Aéy(l>d+(Qbf§ ady” A6y2>d+ 5 peady® Aoy,

a =0,1,2, where the coefficients R ;%,, P %, Q %, S %, are d-tensors, named
(0c) (Ba) (Ba) (Ba)

the d-tensors of curvature of the N-linear connection D. For a JN- linear connection,
there holds

0% =0Q%=09,
(0) 1 (2

this is,
R, = R,% = R,% = R,%:
(OO)de (Ol)de (02)b cd (O)bcdv
P = P,% = P,%=P,° 9
(ﬁO)de (,BI)de (ﬁQ)de (ﬁ)bcd ( )
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Q chLd = Q b%d = Q bL(L:d = Qb((l:d

(20) (21) (22)

S0 = Syh= St = 8,081
(50)° 4 @bt T Gt T (B

The detailed expressions of the d-tensors of curvature can be found in [1].

3. Metric structures on T?M

A Riemannian metric on T?M is a tensor field G of type (0,2), which is
nondegenerate in each v € T2M and is positively defined on T2M.
In this paper, we shall consider metrics in the form

G = gaudr®@d® + g0y @ oy + g 4oy @ sy, (10)
0) (1) @)

where g o0 = g ao(z,y"),y?); this is, such that the distributions N, N; and V3
generat(:c)l by tﬁ: )nonlinear connection N be orthogonal with respect to G.

An N-linear connection D is called a metrical N-linear connection if DxG =
0, VX € X(T?’M).

This means

B
g ab |ac:07a:07172a/6:172'
(@)

9 ablac =
a

The existence of metrical N—linear connections is proved in [2].

4. The Ricci tensor Ric(D)

Let us notice that, if D is not J- compatible, we could expect that the com-
ponents of the Ricci tensor look in a more complicated way that the ones in the
Miron-Atanasiu theory, [7].

Indeed, if we consider the Ricci tensor Ric (D) ,[14], as the trace of the linear

operator

Vi R(V,X)Y, WV = V05, 4 VO, + V%65, € X (T°M), (1)
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then we have:

Ric(D)(X,Y) = trace(V—R (V" X)Y+R(VV",X)Y +

+R (VY X)Y).

By a straightforward calculus, we obtain:

Theorem 4.1. The Ricci tensor Ric(d) has the following components:

R
(00)

= —P¢ , = —P 4
(10)? < (10)™

= —PpP¢ = — P .
(20)7 < (20)"

- Pgbc = Pab;
(11) (11)

2
= - Q Zcb == Q ab;
(21) (21)

=: P .
(22)% b¢ 22"

= ngc ::Qab;

(22) (22)

c —.
— S a be —* Sab.

(22) (2)

)
)
)
)
Rie(D) (50 5t ) = S = S
(o 702)
)
)
)

SC(D) = gabRab + gabSab + gabSabv
1 @ (2 @

b

where g%, g % g9 are the coefficients of the inverse matrix of G.

- ®
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In the particular case of a JN-linear connection, taking into account (8'),

with the notations in [7], we have

1 1 2 1
Pa = Pay, Pap=Pa, Qa = P p(=Q.5%), 14
3" ®* @0 »® (g)b &y (= Qaie) (14)

(g)ab = (5)55 (= Qq )

5. Einstein equations

The Einstein equations associated to the metrical N-linear connection D are
. 1
Ric(D) — §Sc (D)G = KT, (15)
where £ is a constant and 7 is the energy-momentum tensor, given by its components

T ab = T 76aa
s = T )
Expressing the above relation in the adapted frame (2), we obtain

Theorem 5.1. The Einstein equations associated to the metrical N - linear connection

D are

ab 2 c ( ) ab K/( )
1

Pab:KTabaﬂ:]-vQ;
(BB) (80)

2

Pu=—kKT o =12
50)* P

S ap— 1Sc(D b=k T ap,aa=1,2;
»H™ 2 ”é)b 6"

1

Q ab = R T abs
(22) (21)

2

Q ab = —K T ab-
(21) (12)

In the case when D is a JN-linear connection, one obtains the result in [7].

In order to avoid confusions when raising and lowering indices, because of the

fact that the components ¢*°, g ®, g @ are different, we will denote in the following
n ©

by %, 7,... the indices corresponding to the horizontal distribution, by a,b, ... those

corresponding to N1, and by p,q, ... those corresponding to V5. Thus, if we impose
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the condition that the divergence of the energy- momentum tensor vanish, in the

adapted frame we will obtain

Theorem 5.2. The law of conservation on T?>M endowed with the metrical N -linear

connection D is given by

1 ) 1 (D) 2 (1) 1 (2 2 (2
(le - §Sc (D) 6;)“ + (ﬁ)aj | o _(10); | . +(2p2)Pj |, _(g)jp | ,=0;
P B (s5-3seom) T @n T, - 80T =0
an” o’ m- 2 O (22) P P
pi o piy clg “(T) —é“ (T) +(S“15C(D)61’> (T) =0.
Pl ot T g Te g Te T )t 2 i) 'r

In the same way, one can deduce the Maxwell equations associated to the

metrical N-linear connection D.
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