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THE FINITE-VOLUME PARTICLE METHOD
ON A MOVING DOMAIN

J. STRUCKMEIER AND DELIA TELEAGA

Abstract. In the present work we apply the Finite-Volume particle
method (FVPM) to a test problem posed on a moving geometry. The
FVPM is a relatively new meshless method for discretizing conservation
laws, which combines the generic features of a Finite-Volume scheme and
a particle method. After a brief derivation of the method, a special Ansatz
for the movement of the particles is proposed. Finally we present numerical

results obtained for the test problem using FVPM.

1. Introduction

The Finite-Volume Particle Method (FVPM) is a relatively new meshless
method for solving hyperbolic systems of conservation laws. The motivation for devel-
oping a new scheme was to unify advantages of particles methods and Finite-Volume
methods (FVM) in one scheme. The FVPM combines the generic features of a Finite-
Volume scheme and a particle method, namely the concept of a numerical flux function
and the flow description using moving particles. This method was studied in detail
in[1-9].

Here we shortly present the application of the FVPM to a test problem posed on a

moving domain, a problem which was discussed in detail in [8].
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2. Derivation of the method

We consider conservation laws written in the form
du+V-F(u)=0, VzxecQt)CR,t>0 (1)

with initial conditions u(z, 0) = ug(x), YV € Q(t), and suitable boundary conditions,
where Q(t) is a moving, bounded domain in R?, u(x,t) € R™, m > 0 denotes the
vector of conservative quantities, and F(u(x,t)) denotes the flux function of the
conservation law.

A natural approach to discretize conservation laws is to evaluate the weak formulation
of (1) with a discrete set of test functions #;, 1 =1, ..., N. In classical FVM, the test
functions are taken as the characteristic functions Iq,(x) of the control volumes €;
on a spatial grid. The discrete quantities are obtained from cell averages. Note that
characteristic functions form a partition of unity, i.e. Zf\; o, () =1, Ve € Q.

A similar approach is used in the following, but we introduce a different set of test
functions. Since we want to derive a mesh-free method, we should not make use of a
mesh. Therefore the conservative variables are approximated at each time step by a
finite set of particles located in the spatial domain Q(¢). From this point of view, the
FVPM is a particle method with particle positions x;(t), which may be irregularly
spaced and moving. To each position x;(t) we associate a function ¢;(x,t) - the
particle. As in the Finite-Volume approach, let {¢; : i = 1,..., N} be a partition of
unity, but the supports of the functions should overlap. More exactly, we assume that
the particles are smooth functions localized around the particle positions x;(t) and

satisfy

N
Z@bi(w,t):l,Va:EQ(t),tZO. (2)

We construct this partition of unity in the following way:
Taking a Lipschitz continuous function W : R — R} with compact support (otherwise
one has to consider long-range interactions between particles), we define

Wi(ll:, t)

wz(mat): O'(LB t) ’

3)
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where o(x,t) = Zfil Wiz, t), Wi(xz,t) = W(x—x;(t)), i = 1, ..., N. Such a partition
of unity used in FVPM is shown in Figure 1.
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F1GURE 1. A partition of unity used in FVPM

In the FVPM, the particles generically move through the domain, following a pre-
scribed velocity field a(z,t) € C°(C'(R?), R, ), i.e. we have &; = a(x;,t). Fora = 0,
one obtains fixed particles, and for a being, for example, the fluid velocity in the case
of Euler’s equations, one obtains a Lagrangian scheme.

To each particle, one associates a volume V;(¢) and a discrete quantity w;(¢) which is

the integral mean value with respect to the test function

wi(t) = /Q w(z, )i (z, )dz, where Vi(t) = /Q Vi, de. (4)

1
Vi(t)
Testing the conservation law (1) against the new set of test functions 1;(x,t) and

using the quantities defined above, one ends up with a system of ordinary differential

equations (see [8] for details)

d N
7 (Viws) = — ; 1B;19:; — /BQ%(.’F(u) — u-b)-ndo, (5)

with the initial condition

1

u;(0) = W

/Q wo () (x, 0)da. (6)

Note that the boundary term appears only for particles ¢ which are near the boundary,
i.e. supp; NN # 0, and consists of a term containing the flux of the given conser-
vation law, as well of a contribution due to the moving boundary with the velocity b.
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The coefficients 3;; and g;; are defined as

Bij(t) = vi;(t) —v(t), ;@) = o0 @ %VW dx (7)
9,;(t) = g(t,zi,ui,xj,uj,n), ni;= |g”| (8)
ij

where g is a numerical flux function consistent with the modified flux G(t, &, u):

where & is the particle movement given by &(¢) = a(x,t). The numerical flux function
g can be any numerical flux function used in FVM, but it has to be consistent with
the modified flux function G, not with F.

Using an explicit Euler discretization of the time derivative, one obtains

Vn+1 n+1 Vn n_ Z |,8 |g” B, (10)
JEN(H)
with u = Vlo' f x)Yi(x,0)dx, where B; is a discretization of the boundary term
explained in [8].

A natural reconstruction of a function from the discrete values is given by

N
= upi@, )y, (1), TEQ LED,T]. (11)

i=1
3. Special Ansatz for the particles movement

We concentrate on simulating a flow around an oscillating circle in a spatial
two-dimensional geometry. The computational domain is given by Q(t) = [0,1] x
[0,1] \ Bg(t), where Bg(t) = {(z,y) € R : ||z — 2:(t),y — y.(t)]| < R} is the
circle of center (z.(t),y.(t)) and radius R. Let us denote the domain’s boundary by
00N(t) :=Tg UTR(t), where I'g is the exterior boundary and I'r(t) is the boundary of
the moving circle.

We consider a simple, rigid movement of the circle, although one may consider another
types of movements. In our example the circle is oscillating up and down, for example
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with respect to the following equations:

i.(t) = 0, z.(0) =2 (12)

ge(t) = Awcos(wt), y.(0) =y, (13)

where A is the amplitude of the motion and w is the frequency.

For the fluid-structure interaction problem which is considered here the effects due
to viscosity can be neglected. Hence, the fluid is modeled by Euler’s equations for
compressible inviscid flow.

In formula (5) there are incorporated two movements: a, the movement of the particles
(through the numerical flux function g), and b, the movement of the boundary. Now
we have to answer the question: being given the velocity field b, how should the
particles move?

One may observe that it is not suitable to move the particles with the flow velocity
if a smoothly varying particle distribution is desired. Therefore we consider that
the movement of the particles a is given by the solution of a Laplace equation with
corresponding boundary conditions, namely zero velocity at the exterior boundaries

and velocity of the circle at the interior boundary:

Aa(x,t) = 0, Q(t)
a(x,t) = 0, To(t) (14)
a(mat) = (i.c(t)ayc(t))a FR(t)

In this way the particles follow the domain geometry. In this example, since the
movement of the boundary is restricted to a rigid body movement of an isolated
object, the whole distribution of particles may be moved with the boundary. In this
way the particles remain rigid, i.e. there is no relative motion between the particles.
The advantage of this rigid movement is clear, we do not have to recompute every
time the coefficients 3,;; for example. However, the rigid movement approach is less
general than the one proposed here.

In [8] we also investigated under which conditions on the motion of the circle and the
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smoothing length of the particles no ’holes’ are developed in the domain. By a ’hole’

we understand a space which is not covered by the support of any particle.

4. Numerical results

Here we present numerical results concerning the test problem defined in the
previous section.
If the circle moves periodically up and down, like specified in (12), (13), there exists a
periodic solution, i.e. after a few oscillations up and down the flow becomes periodic,
with the same period as the circle’s movement. To see this, we compute the difference
between the solution every time when the circle attains its initial position, moving

upwards, i.e. exactly after a complete period:

e =3 |oEVE = oV k= 0,1, K,

ieN
where ka0 = [T/ P], P = 27 /w is the period of the movement, T is the final time, to
is the time when the circle starts to move, p¥ = p;(to + kP) and V¥ = V;(to + kP).
For this computation we choose N = 50 x 50 uniform distributed particles, to = 0,
w=10m, A=0.1, P =27/w = 0.2, and T = 4.05. Hence, k4. = 20. As can be seen
in Figure 2, after around 10 complete oscillations, the differences e; are so small that

the flow can be considered to be periodic.
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k

FI1GURE 2. Differences e; versus k
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Now we choose N = 100 x 100 quasi-random distributed and moving particles. The
movement of the circle is as before, i.e. A = 0.1 and w = 107w. The solution at
time T' = 0.55 is presented in Figure 3 and 4. In Figure 3(left) one may see the
irregular particle positions together with their corresponding density. The solution
reconstructed on a uniform grid is shown in Figure 3(right) (isolines of the density)
and Figure 4 (isolines of the velocity components).

These results show that the method works also in the case of a time-dependent domain

and using irregular distributed and moving particles.
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FIGURE 4 Tsolines of u - (left) and v - Velocity component (right} in

the same case as in Figure 3
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5. Conclusions

We presented here an application of the FVPM to a spatial two-dimensional

problem posed on a moving domain, where the meshless character of the method is

fully exploited. The particles are irregularly distributed in the domain and they are

moving in a non-Lagrangian way such that they smoothly follow the time-dependent

computational domain.

Numerical results indicate that the method is well-suited for such problems. Also the

discretization of the boundary conditions works very satisfactory.

Thus, a first step to applying the FVPM to real fluid-structure interaction problems,

which in general limit the use of grid-based methods, is done.
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