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THE UNITARY TOTIENT MINIMUM AND MAXIMUM
FUNCTIONS

JÓZSEF SÁNDOR

Abstract. The unitary totient function has been introduced by E. Cohen

[1]. The Euler minimum function has been first studied by P. Moree and

H. Roskam [2], and independently by the author [4], who introduced more

general concepts (and duals). A particular case is obtained for the unitary

totient. Basic properties for this minimum, as well as maximum functions

are pointed out. These include inequalities, divisibility properties, and

values taken at special arguments. The necessary exponential diophantine

equations are treated by elementary arguments.

1. Introduction

A divisor d of n is called unitary if
(
d,

n

d

)
= 1. Let (k, n)∗ denote the

greatest divisor of k which is a unitary divisor of n. The arithmetical functions asso-

ciated with unitary divisors have been introduced by E. Cohen [1]. The multiplicative

function

µ∗(n) = (−1)ω(n),

where ω(n) denotes the number of distinct prime factors of n, is the unitary analogue

of the Möbius function µ(n) and we have

∑
d||n

µ∗(d) =

 1, n = 1

0, n > 1
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where d||n denotes that d is a unitary divisor of n. Let ϕ∗(n) denote the unitary

analogue of the Euler totient function, that is ϕ∗(n) represents the number of positive

integers k ≤ n with (k, n)∗ = 1. Then, it is easy to see that

ϕ∗(n) =
∑
d|n

dµ∗
(n

d

)
,

so ϕ∗(n) is multiplicative, being the unitary convolution of two multiplicative func-

tions (see [1]), and for n = pα1
1 . . . pαr

r > 1 (prime factorization of n) we have

ϕ∗(n) = (pα1
1 − 1) . . . (pαr

r − 1) (1)

Put ϕ∗(1) = 1.

Let A ⊂ N∗ = {1, 2, . . . } be a given set, and f, g : N∗ → N∗ two given

functions. In [4] and [5] we have introduced the functions FA
f (n), GA

g (n) by (if these

are well-defined)

FA
f (n) = min{k ∈ A : n|f(k)}, (2)

and its ”dual” by

GA
g (n) = max{k ∈ A : g(k)|n} (3)

For A = N∗, f(k) = g(k) = ϕ(n), one obtains the ”Euler minimum” and

”Euler maximum” functions, given by

E(n) = min{k ∈ N∗ : n|ϕ(k)}, (4)

E∗(n) = max{k ∈ N∗ : ϕ(k)|n} (5)

For properties of E(n) given by (4) see [2] and [6], while function (5) appears

for the first time in [4] and [6].

The author has considered also other particular cases of (2) and (3) for

f(k) = g(k) = σ(k) (sum of divisors of k), f(k) = d(k) (number of divisors of k) [7],

f(k) = g(k) = T (k) (product of divisors of k) [9], f(k) = g(k) = S(k) (Smarandache

function) [8], f(k) = g(k) = Z(k) (pseudo-Smarandache function) [11], f(k) = ϕe(n)

(exponential totient function) [10]. It is interesting to note that, for g(k) = d(k) or

g(k) = ϕe(n) the analogues functions to (5) are not well-defined.
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The aim of this paper is the introduction and the initial study of the particular

cases f(k) = g(k) = ϕ∗(k), the unitary totient function. In analogy with (4) and (5)

define

E∗(n) = min{k ≥ 1 : n|ϕ∗(k)}, (6)

E∗
∗(n) = max{k ≥ 1 : ϕ∗(k)|n} (7)

First note that the functions E∗(n) and E∗
∗(n) are well-defined. Indeed, by

Dirichlet’s theorem on arithmetic progressions, for each n ≥ 1 there exists a ≥ 1 so

that k = an + 1 is a prime (see e.g. [3]). Then, since by (1) ϕ∗(k) = k − 1 = an,

which is a multiple of n, (6) is well-defined. On the other hand, remark that

ϕ(n) ≤ ϕ∗(n), (8)

with equality only for n = 1 and n = squarefree (i.e. product of distinct primes).

Since ϕ and ϕ∗ are multiplicative, (8) follows from

ϕ(pα) = pα − pα−1 ≤ pα − 1 = ϕ∗(pα)

(p prime, α ≥ 1), where for α = 1 there is equality.

Now, since ϕ(k) >
√

k for k > 6 (see e.g. [3]) and from ϕ∗(k)|n it follows

ϕ∗(k) ≤ n, so
√

k < n, implying k < n2. Thus E∗
∗(n) ≤ max{6, n2} < +∞, so this

function is well-defined, too.

2. Main results

Lemma 1. For all n ≥ 2 one has

P (n)− 1 ≤ ϕ∗(n) ≤ n− 1, (9)

where P (n) denotes the greatest prime factor of n.

Proof. The left side inequality follows by (pα1
1 − 1) . . . (pαr

r − 1) ≥ pαr
r − 1 ≥

pr − 1, where p1 < p2 < · · · < pr are the distinct prime factors of n. Then by (1),

ϕ∗(n) ≥ pr − 1 = P (n)− 1.

For the right side of (9), apply the obvious relation (1 + y1) . . . (1 + yr) ≥

1 + y1 . . . yr (yi > 0 for i = 1, 2, . . . , r) to yi = pαi
i − 1 > 0. Then we get pα1

1 . . . pαr
r ≥
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1 + (pα1
1 − 1) . . . (pαr

r − 1), so by (1), the required result follows. Since here there is

equality only for r = 1, the equality sign in right-side of (9) is attained only for n =

prime power. Clearly, for the left side of (9) there is equality for n = prime.

Lemma 2. Let r = ω(n) be the number of distinct prime factors of n. Then

ϕ∗(n) ≤ (n
1
r − 1)r for all n ≥ 2 (10)

Proof. Apply the Huyggens inequality

r
√

(1 + y1) . . . (1 + yr) ≥ 1 + r
√

y1 . . . yr (yi > 0)

to yi = pαi
i − 1. Then by (1), inequality (10) follows.

Theorem 1.

ϕ∗(E∗
∗(n))|n|ϕ∗(E∗(n)) for all n ≥ 1. (11)

Particularly,

ϕ∗(E∗
∗(n)) ≤ n, (12)

ϕ∗(E∗(n)) ≥ n. (13)

Proof. Let E∗(n) = k0. By Definition (6), n|ϕ∗(k0). This gives the right

side of (11). If E∗
∗(n) = k1, then by (7), ϕ∗(k1)|n, so the left side of (11) follows.

Relations (12) and (13) are direct consequences of (11).

Corollary 1.

E∗(n) ≥ (n
1
r + 1)r ≥ n + 1, for n ≥ 2, (14)

where r = ω(E∗(n)).

Proof. By (10), ϕ∗(E∗(n)) ≤ (E∗(n)
1
r−1)r, so by (13) we get n ≤ (E∗(n)

1
r−

1)r. This gives the first relation of (14). The second one is a trivial consequence of

(a + b)r ≥ ar + br (a, b > 0, r ≥ 1), which follows e.g. by the binomial theorem.

Corollary 2.

P (E∗
∗(n)) ≤ n + 1, n ≥ 2, (15)
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where P (m) denotes the greatest prime factor of m.

Proof. This is similar to the proof of (14), by applying (12) and the left side

of (9).

Remark 1. The weaker inequality of (14), i.e. E∗(n) ≥ n + 1 for n ≥ 2

follows also by (13) and the right side of (9). This inequality becomes an equality for

many values of n, e.g. for n = 2, 3, 4, 6, 7, 8, 10, 12, 15, 16, 18, 22, . . . . Particularly, we

prove:

Theorem 2. If p ≥ 3 is a prime, then

E∗(p− 1) = p (16)

Proof. Since (p − 1)|ϕ∗(p) (because of ϕ∗(p) = p − 1), by definition (6) it

follows E∗(p− 1) ≤ p. On the other hand, applying E∗(n) ≥ n + 1 for n = p− 1 ≥ 2

one gets E∗(p− 1) ≥ p, so (16) is proved.

Clearly, since ϕ∗(p)|(p− 1), too, by (7) and (15) we get

Theorem 3. For all primes p,

E∗
∗(p− 1) ≥ p, (17)

and

P (E∗
∗(p− 1)) ≤ p for p ≥ 3 (18)

Remark 2. The exact calculation of E∗
∗(p− 1) seems difficult. However, the

determination of E∗
∗(p) is given by the following

Theorem 4.

E∗
∗(p) =


6, if p = 2,

2, if p ≥ 3 is not a Mersenne prime,

2n, if p = 2n − 1 is a Mersenne prime

(19)

First we prove the following auxiliary result:
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Lemma 3. Let p be a prime. Then the equation

ϕ∗(x) = p

is solvable if and only if p = 2 or p is a Mersenne prime (with a single solution).

Proof. If x is composite, x = pα1
1 . . . pαr

r , with ω(x) = r ≥ 2, then ϕ∗(x) =

(pα1
1 − 1) . . . (pαr

r − 1) is always composite, so 6= p. If r = 1, i.e. x = qα, then

ϕ∗(x) = qα − 1 = p iff qα = p + 1. Now, if p ≥ 3, then p + 1 is even, so we must have

q = 2, i.e. p = 2α − 1 = Mersenne prime (see [3]). If p = 2, we get q = 3, α = 1 so x

is not composite.

If x = q is a prime, then ϕ∗(x) = q− 1 = p ⇔ q = p+1, and this is solvable

only if p = 2, since for p ≥ 3, p + 1 being even, cannot be a prime.

Now, for the proof of (19), let ϕ∗(k)|p. Then ϕ∗(k) = 1 (i.e. k = 1 or 2),

or ϕ∗(k) = p. Since p ≥ 2, always, the result follows from Lemma 3, by taking into

account the form of the solution, when p is a Mersenne prime.

We now prove:

Lemma 4. Let k ≥ 1 be an integer. Then the equation

ϕ∗(x) = 2k

is always solvable, and its solutions are of the form x = F , or x = 2F , where F = 9;

a Fermat prime; or the product of distinct Fermat primes.

Proof. Let x = pα1
1 . . . pαr

r , when ϕ∗(x) = (pα1
1 − 1) . . . (pαr

r − 1) = 2k

⇔ pα1
1 − 1 = 2a1 , . . . , pαr

r − 1 = 2ar , with a1 + · · · + ar = k. Thus pα1
1 = 2a1 +

1, . . . , pαr
r = 2ar + 1, so each pi (i = 1, 2, . . . , r) is odd, so x must be odd. Since we

can have also the case 21 − 1 = 20, x could be also of the form x = 2F , where F is

odd. Therefore we must study an equation of type

pα = 2a + 1 (a ≥ 1) (20)

1) If α = 2m is even, then (pm−1)(pm+1) = 2a gives pm−1 = 2u, pm+1 = 2v

(u + v = a), so 2v − 2u = 2, i.e. 2v = 2(1 + 2u−1), which is possible only if u = 1,
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v = 2. Then pm − 1 = 2, pm + 1 = 4, giving p = 3, m = 1, α = 2; so a = 3 and

x = pα = 9.

2) If α = 2m + 1 (m ≥ 0), for m = 0 we get α = 1, so p = 2a + 1 is

a prime, so it is a Fermat prime (see [3]). Let m ≥ 1. Then since p2m+1 − 1 =

(p− 1)(p2m + p2m−1 + · · ·+ p + 1) and p is odd, the second term contains a number

of 2m + 1 odd terms, so it is odd. Thus (20) is impossible.

This finishes the proof of Lemma 4.

Theorem 5. E∗
∗(2

t) = 2m, where m is the greatest of the products (2a1 +

1) . . . (2ar + 1) of Fermat primes, where a1 + · · ·+ ar ≤ t.

Proof. Let ϕ∗(k)|2t. Then ϕ∗(k) = 2a, where 0 ≤ a ≤ t. By Lemma 3, the

greatest such k is k = 2m, where m = (2a1 +1) . . . (2ar +1), with a1 + · · ·+ar = a ≤ t

and r is maximal (i.e. m is maximal if a1 + · · ·+ ar ≤ t).

Example. E∗
∗(8) = 30.

Indeed, 8 = 23, a1 + · · ·+ ar ≤ 3 ⇔ r = 2, since 21 + 1 = 3, 22 + 1 = 5 are

Fermat primes and 1 + 2 = 3. So 2m = 2 · 3 · 5 = 30.

Lemma 5. Let p be a prime. Then

ϕ∗(x) = p2

is solvable iff p = 2. The solutions are x = 5, 10.

Proof. 1) Let x = pα1
1 . . . pαr

r be odd. Then (pα1
1 − 1) . . . (pαr

r − 1) = p2 iff

a) pα1
1 − 1 = p2;

b) pα1
1 − 1 = 1, pα2

2 − 1 = p2;

c) pα1
1 − 1 = 1, pα2

2 − 1 = 1, pα3
3 − 1 = p2;

d) pα1
1 − 1, pα2−1

2 = p, pα3
3 − 1 = p.

Remark that cases b), c), d) are impossible, since then p1 = 2 always, and

this contradicts x = odd. In case a), since p1 is odd we must have p = even, so p = 2.

But in this case, p1 = 5, α1 = 1, so x = 5.

2) If x is even, then p1 = 2. In case a) we can write 2α1 = p2 + 1. For

p = 2, 3, 5 this is impossible. If p > 5, then it is known (see e.g. [3]) that p must have
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the forms p = 6M ± 1, so p2 = 36k2 ± 12k + 1 = 12k(3k ± 1) + 1 = 24M + 1, so

p2 + 1 = 2(12M + 1) 6= 2α1 .

In case b) α1 = 1, pα2
2 = 5 (p2 = 5, α2 = 1) is possible, implying x = 2·5 = 10.

Cases c), d) cannot hold, since then e.g. in case c) α1 = 1, α2 = 1, p2 = p3

and this is a contradiction to p3 > p2. Similarly, in case d).

Theorem 6.

E∗
∗(p

2) =


10, if p = 2

2, if p ≥ 3 is not a Mersenne prime

2k, if p = 2k − 1 is a Mersenne prime

Proof. ϕ∗(k)|p2 ⇔ ϕ∗(k) ∈ {1, p, p2}. Now, apply Lemmas 3, 5, and

definition (7).

Lemma 6. Let p be a prime, k > 1 an integer. Then the equation

ϕ∗(x) = pk

is solvable only for p = 2.

Proof. First we prove an auxiliary result:

Lemma 6’. If k > 1 and p is a prime, α ≥ 1, then the equation

pk = 2α − 1 (21)

is not solvable.

Proof. First remark that p must be odd. If k = 2m + 1 (m ≥ 1) is odd,

then p2m+1 + 1 = (p + 1)(p2m − · · ·+ p + 1), where the second term contains an odd

number of odd terms, and the signs + or −, so it is odd. Thus (21) is impossible. If

k = 2m is even, and p > 5, then by p = 6s± 1 (as in the proof of case 2) of Lemma

5) p2 = 24M + 1, so p2m = M24 + 1, p2m + 1 = 2(M12 + 1) 6= 2α.

For p = 3, 5 we must consider separately equation (21) in case k = 2m.

So 32m = 9m = (8 + 1)m = M8 + 1, so M8 + 2 = 2(M4 + 1) 6= 2α. Similarly,

52m = 25m = (2n + 1)m = M24 + 1, i.e. 52m + 1 = M24 + 2 = 2(M12 + 1) 6= 2α.

This finishes the proof of Lemma 6’.
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The proof of Lemma 6 is similar to that of Lemma 5.

When x is odd, then pα1
1 − 1 = pk in case a) so p = 2, so by (20). This is

possible only when p1 = 3, so k = 3.

The other cases, when pα1
1 − 1 = 1, etc. are impossible, since p1 = 2, contra-

diction to x = odd. Similarly the case pα1
1 − 1 = p, . . . , pαr

r − 1 = p, k = 2, since then

p1 = · · · = pr, impossible.

When x is even, i.e. p1 = 2, in case a) we get 2α1 − 1 = pk, and by (21) this

is not solvable.

Theorem 7.

E∗
∗(p

k) =


2m, if p = 2, where m is given by Theorem 5,

2, if p ≥ 5 is not a Mersenne prime,

2k, if p = 2k − 1 is a Mersenne prime.

Proof. This is similar to the proof of Theorem 6 (case k = 2), but remarking

that for p = 2 we must use Theorem 5.
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