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GENERATION OF NON-UNIFORM LOW-DISCREPANCY
SEQUENCES IN QUASI-MONTE CARLO INTEGRATION

NATALIA ROSCA

Abstract. We propose an inversion type method that can be used in
Quasi-Monte Carlo integration to generate low-discrepancy sequences with
an arbitrary distribution function G. The method is based on the approx-
imation of the inverse of the distribution function by linear Lagrange in-
terpolation or cubic Hermite interpolation. We also give bounds for the

G-discrepancy of the generated sequences.

1. Discrepancy and error bounds

In quasi-Monte Carlo integration one approximates f[o 1 f(z)dz by sums of
the form 4+ S | f(xy), where f : [0,1]* — R and (z1,...,zx) is a sequence of
deterministic points, with z; = (xél), e ,xés)) €[0,1)°, k=1,...,N. A well-known
measure of the distribution properties of the sequences used in quasi-Monte Carlo

integration is the discrepancy.

Definition 1 (discrepancy). Let P = (z1,...,2zn) be a sequence of points in [0, 1]°.

The discrepancy of sequence P is defined as

1
Dn(P)= sup |=An(J,P)—=A(J)|,
JClo,1]

where AN counts the number of elements of sequence P, falling into the interval J,
1.€.,
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N
An(J,P) = Z Ly(zp).
k=1

1y is the characteristic function of J and X is the s-dimensional Lebesgue measure.

The sequence P is called uniformly distributed if Dy (P) — 0 when N — oo.

For s = 1, we may arrange the points x1,...,zny of a given point set in
nondecreasing order. The following result is due to Niederreiter [10].
Theorem 2. Ifzp == 0 < 21 <29 < ... <zny <1 =: zN41, then we have the

following expression for the discrepancy of sequence (z1,...,TN)

1
N+Ti_rj

(1)

D ( ) 1 n n . n

Z1,...,TN) = —+ ma ——Zp|— min {—-—2,| = ma

Ny ee e N N 1§n§XN N ") i<n<n \N " 0§i§)§\l
1<j<N+1

where rp, = & — xp for 0 <n <N +1.

The monograph by Niederreiter [10] provides a comprehensive overview on
discrepancy, low-discrepancy sequences and their properties. Halton [5], Faure [3],
[4], Niederreiter [10] and others constructed famous low-discrepancy sequences.

A similar concept of discrepancy can be defined for non-uniformly distributed

sequences.

Definition 3 (non-uniform discrepancy). Consider an s-dimensional distribution
on [0,1]%, with distribution function G. Let Ag be the probability measure correspond-
ing to G. Let P = (z1,...,zN) be a sequence of points in [0,1]°. The G-discrepancy

of sequence P = (x1,...,zN) is defined as

1
Dy a(P)= sup |=An(J,P)—Ac(J)|.
JClo.1]e

The sequence P is called G-distributed, if Dn g(P) — 0 when N — cc.

If f is a function with finite variation in the sense of Hardy and Krause,
Viuk (f) < +oc (see eg. Owen [12]), then an upper bound for the error of the approxi-
mation in quasi-Monte Carlo integration is given by the non-uniform Koksma-Hlawka
inequality (see Chelson [1]).
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Theorem 4 (non-uniform Koksma-Hlawka inequality). Let f : [0,1]° — R
be of bounded wvariation in the sense of Hardy and Krause. Moreover, let G be a

distribution function with continuous density on [0,1]° and (z1,...,2N) a sequence

on [0,1]°. Then, for any N >0

<Vuk(f)Dna(z1,...,7N),

N
1
§ Y s - [ f@d6e
N I; [0’115
where Vi (f) is the variation of f in the sense of Hardy and Krause.

2. Inversion method

The inversion method produces a random variable with desired distribution
function by making use of the inverse of the distribution function.

Consider a distribution on [0, 1] with continuous density function g and dis-
tribution function G(z) = fox g(t)dt. Assume that there exists the inverse function
G~!'. The inversion method is based on the following principle.

Theorem 5. Let U be a random variable uniformly distributed on [0,1]. Then the

distribution function of the random variable G=1(U) is G.

Proof. We denote by Fg-1(yy the distribution function of G~ 1(U). We have

FG—](U)((E) = P(G_I(U) < (E) = P(U < G(.’E)) = G(.’E)
Thus, the distribution function of the random variable G='(U) is G. O

Such a transformation preserves the discrepancy in one dimension, as showed
in the following theorem (see Okten [11]).
Theorem 6. Let P = (z1,...,zn) be a sequence in [0,1] and G a distribution func-
tion on [0, 1].

Construct the sequence (yi,...,yn) = (G7H(x1),...,G7(zN)). Then the

G-discrepancy of the constructed sequence is given by

-DN,G(yla e ,yN) = DN(.I‘l, e ,.T,‘N).
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In other words,

Dn.a(G'(P)) = Dn(P).

As a consequence, for generating low-discrepancy sequences with an arbitrary
distribution function G, we can transform uniformly distributed low-discrepancy se-
quences using the inverse function G~'. In most cases, however, the inverse G~!
cannot be given analytically. In such cases, we may use the inversion technique with

an approximation of the inverse function G~!.

3. Existing inversion type methods

The inversion type transformations presented in this paper are designed for
the one-dimensional case. They all propose different modalities of approximating the

inverse G~ 1.

3.1. Hlawka-Miick method. Hlawka [7] defines a transformation and bounds the
G-discrepancy of the transformed sequence as follows.

Theorem 7. Consider a continuous type distribution on [0,1], with density g and
distribution function G. Assume that the distribution function G is invertible and
M = supﬁe[o’l}g(z) < o0. Furthermore, let (x1,xa,...,2N) be a sequence in [0,1].

Generate the point set (y1,y2,-..,ynN) with

1 N
:NZ +p - Gla,)] = 21[0“ ), (2)

where [a] denotes the integer part of a. Then the generated sequence has a G-

discrepancy of

DN,G(yla ' ayN) (2+6M)DN($17 --7$N)' (3)

This method is known in the literature as the Hlawka-Miich method and it
is a generalization of an earlier version proposed by Hlawka and Miick in [8], [9]. The
main disadvantage of the Hlawka-Miich method is that all the points of the sequence
80
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(y1,y2,...,yn) are of the form i/N,(i = 0,...,N). This implies that, when adding

some points, all the other points have to be regenerated.

3.2. Method proposed by Hartinger and Kainhofer. They propose (see [6])
an inversion type transformation that is also shown to generate G-distributed low-

discrepancy sequences.

Theorem 8. (see [6]) Let P = (x1,%a,...,2N) be a sequence in [0,1]. Consider
a continuous type distribution on [0,1], with density g and distribution function G.
Assume that the distribution function G is invertible and M = sup,cp 1) 9(x) < oo.

Define for k=1,...,N

T, = max x;
A={z;€P|G(zi)<zr}

(E;: = min T;
B={x;€P|z,<G(zi)}

Setz, =0if A=0and 2 =1if B=0.
Then the G-discrepancy of any transformed sequence (y1,ya, - .-, yn) with the property
that y; € (m;,m;] for all 1 < k < N is bounded by

DN7(;(y1, .. .,yN) < (1 =+ QM)DN(.’El, - ,.’EN).

In the method proposed by Hartinger and Kainhofer, any value in the in-
terval (a:,;,a:;:] can be considered as G~ !(zy). They do not analyze the possibility
of approximating G~! using interpolation methods. Thus, in their method, the kind
of interpolation is not relevant for the discrepancy bound and the smoothness of the

interpolation is not taken into account.

4. Inversion method using linear Lagrange interpolation

Next, we propose an inversion type method that can be used to generate
one-dimensional low-discrepancy sequences with an arbitrary distribution function
G. The method is based on the approximation of the inverse of the distribution
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function by linear Lagrange interpolation. We also give bounds for the G-discrepancy
of the generated sequence. Our method is based on the following idea:

Let 0 <z < ... < zy < 1 be a one-dimensional sequence. Let G be an
invertible distribution function. We define o = 0 and zy4; = 1. To approximate
G~1(zy), we proceed as follows. First, we determine the interval (z;,7;;1], with

i€{0,1,...,N} such that G™1(x1) € (x;,2;+1], based on the following equivalence:

G (xp) € (i, mip1], T G(x;) < zp < G(mig).

Then, we approximate G~1(x;) with a value y in the interval (x;,7;11], which is
calculated using linear Lagrange interpolation of G~'.

Before describing our method, we recall a lemma from Niederreiter [10].

Lemma 9. Let P, = (uy,...,un) and Py = (v1,...,0n) be two sequences in [0,1].

If, for all 1 <n < N, the following condition takes place

|t —vn| < €
then
|Dn(ug,...,un) — Dy(v1,...,on)] < 2e. (4)

To prove the main theorems of this paper, we formulate and prove the fol-

lowing results.

Proposition 10. Let (z1,z2,...,2xN) be a one-dimensional sequence in [0,1], with
g =0<z <22 <...<2xNy <1=2N41. The following inequality takes place

|mn_$n+1|SDN(m17"'7mN); ’I’L:O,...,N. (5)
Proof. We note that

1 n n+1 1
|$n_$n+1|:‘ﬁ+<ﬁ—$n>—< N —xn+1>‘:‘ﬁ+rn_rn+l

where r, = & — 2, n=0,...,N + 1.

It follows that
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1
|2 — Zpg1] < 01<nz;1)§v N +7;—7j| = Dn(x1,...,ZN).
1<]<N+1
In the last equality, we used the result from Theorem 2. O

Lemma 11. Consider a continuous type distribution on [0,1], with density g and
distribution function G. Assume that the distribution function G is invertible and
g(t) #0, Vtel0,1]. If G € C*([0,1]) then G~' € C*([0,1]) and the derivatives of

G~ have the following expressions:

1
-1\
! G~ 1)
Gfl "o _ g(
N (GRIE
G1® = _g"(GTHg(GTY) = 3(g'(GTH))?
(9(G=1))?
G = _g"(G NgAG ) —10g"(G)g' (G Hg(GT) +15(g"(G))°
(g(G=1)7 '
Their norms are given by:
— gl
16l = |
I(G—H®] :‘ g"g* —10g"g'g + 15¢"
o0 g7 -
Proof. The proof is immediately. O

Theorem 12 (Lagrange interpolated inversion method). Let 0 < z1 < ... <
zny < 1 be a one-dimensional sequence. We consider a continuous type distribution
on [0, 1], with density g and distribution function G. We assume that the distribution
function G is invertible, supycpo.1)9(t) < M < oo and g(t) #0, Vt € [0,1]. For each

point x, k=1,..., N, we determine the interval (z;,x;11] such that
G(ﬂfl) <z < G(l‘i+1).

We denote by (z; ,x}] the determined interval (z;,zi41] .
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We set z;, =0 if x < G(21) and zif =1 if G(zn) < z%.

We generate the sequence (y1,...,yn) with

Ty, —G(a::) _ = G(z,)
ko

_ g; k=1,....N.
%= G - G ™ T Ga) - Glay) Lo (6)

1

If G € C?0,1] and ||%& < L, then the G-discrepancy of the sequence

93
(y1,Y25.-.,ynN) is bounded by *
DN7G(y15"'ayN) S (1+M3L)DN(.’E1,,.’EN) (7)
G
1
G(x;)
Xk
G(x,)
- T
0 Xp Yoo X1

FiGURE 1. Inversion method.

Proof. First, we illustrate how we obtained the values y; given by (6).
We consider a linear Lagrange interpolation of G, with nodes G(a:,;) and
G(z}}). The values of G=! at the nodes are G=' (G(z}, ) = z;, and G~ (G(z])) = =} .

The interpolation formula is:

G'=LG'+RGH,
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where L; G~ is the Lagrange interpolation polynomial of degree 1 and R;G ! is the

remainder. Using the expression of the Lagrange interpolation polynomial, we get

_ zp — G(z]) z, —G(z,)
(LiG™ ) (wh) = ———Fmay + o =y
Gxy) - Gaf) ™" Glaf) - Ga) ™"

Next, we prove inequality (7). For this, we use the result from Theorem 6

and we obtain

DN,G(yla s JJN) DN7G(G_1(G(:U1))7 .- vG_l(G(yN)))

It follows that

|-DN,G(y1;---;yN) —_DN(:El,...,.I‘N)| = |_DN(G(y1),...,G(yN)) - DN(.I‘l,...,.I‘N)|.

Our intention is to apply Lemma 9 with Pi = (z1,...,zn) and P, =
(G(y1),-..,G(yn)). For this, we first estimate |G(yr) — x|, for 1 < k < N, as

follows

6) ~ 1] = [60) - GG )] = | [ ( )g(t)dt‘sma—%xk)—yw ©

We use the bound for the interpolation error (see [2])

|G_1($k) _yk| — |R1(G_1)($k)| < |’U’($k)| ||(G_1)”||

< It . (10)
where
u(ze)| = |(2x — G(ay)) (2 — G(z)) . (11)
Considering the fact that G(z, ) < zx < G(x]), we get
ot
o~ Gay)| <Gl ~ G| = | [ gt < dfaf . a2
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Since [a:,;,x:] is an interval of type [z;, z;+1], we apply Proposition 10 and

we get

|(E;: —(E];| = |.’Ei+1 —.’Ei| S DN(zl,...,acN).

Relation (12) becomes

|z, — G(z) )| < MDy(z1,...,2N). (13)

In a similar way, we obtain

|.’Ek—G(.’E:)| §MDN(561,...,:UN). (14)

From (11), (13), (14), it follows that

lu(zy)| = |($k - G(zy)) (zr — G(ac:))| < M?D3%(z1,-..,7N)- (15)

Using (15) and the result from Lemma 11, relation (10) becomes

]

9

gS

M?2D?2
G () — | < < MMt g

MQD?V(xl,...,:UN)‘
2

Replacing (16) into (9) we obtain

M3D3% (z1,...,7N)
2

|G (yr) — zx| < L, k=1,...,N.

Applying Lemma 9 with P, = (21,...,2n), P» = (G(y1),...,G(yn)), € =

3 N2
wll and using D% < Dy, as Dy < 1, we get

|DN(G(y1)aaG(yN)) _-DN(mlv"'axN)| S 2e S M3LDN(:E17"'7:EN)' (17)

From (8) and (17), we obtain

|—DN,G(yla e ,yN) — _DN(.I‘l, e ,.T,‘N)| S MSLDN(:El,. .. ,QTN).
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The final result is

DN7g(y1, .. .,yN) S (1 + MSL)DN(QT], [N ,QTN).

5. Inversion method using cubic Hermite interpolation

Next, we propose a transformation where the inverse of the distribution func-
tion G is approximated using cubic Hermite interpolation. We also give bounds for

the G-discrepancy of the generated sequence.

Theorem 13 (Hermite interpolated inversion method). On the same condi-

tions as in Theorem 12, we consider the sequence (y1,...,yn) generated by
vk = hoo(zx)zg + ho(ze)a} + hm(wk)g(xlk) () (18)
where
. (ack —G(x,:r))2 o Tk - G(zy,)
Poolos) (G(z;) - G(z}))? (1 T G(wZ))
2 = (zk —G(x,:))2 o Tk - G(z])
Pao(ew) = (G(z7) - G(ap))? <1 G - G(w;))
hoi(zx) = (mk — G(x,:)) (xk — G(wz))Q

(G(xy) - G(a))”

hii(zr) = (2x = G(af) (a1 = Glay))”
(Gle) - Glay))”

forallk=1,...,N.
IfG e C*0,1] and‘

"o

g'”92710g g g+15913
g7

< L, then the G-discrepancy of the se-

o0

quence (y1,-..,yn) is bounded by

MSL
12

Dnc(yi,---,yn) < <1+ >DN(€E1,---,£EN)- (19)
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Proof. First, we explain how we generated the values y; given by (18).
We consider a cubic Hermite interpolation of G™' with double nodes G(z;,)

and G(z]). The values of G=' and (G~!)" at the nodes are G~ (G(z})) = =,

GHG@D) =2, (G (G)) = ;o= and (G (G() = =

9(z) 9(z
The Hermite interpolation formula is:

-

G ' =H;G '+ R:G Y,

where H3G ™! is the Hermite interpolation polynomial of degree 3 and R3G ™! is the
remainder. Using the expression of the Hermite polynomial with double nodes (see

[2]), it can be proved, after some calculus, that

(H3G™") (k) = yn-

Next, we follow the same steps as in Theorem 12. We point out only the

differences. The bound for the interpolation error (see [2]) is given by

|Ry(GY) ()| = |G (@) — wi| < |“(f!’“)| |G|

o0

where

lu(zy)| = ‘(zk - G(ac,;))Q(zk - G(ac:))2‘ < M*D%(z1,...,zN).

We use the result from Lemma 11

glllg2 _ 1ogllglg + 15913

6l = | ; <L
Relation (20) becomes
G ) — gl < ML e g
Similar to Theorem 12, we obtain
|G (yx) — zk| < J\éZLD?V(xl, Ce TN
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Applying Lemma 9 with ¢ = MQ—ZLD}‘V(acl, ...,on) and using Dy < Dy, as

Dy <1, we get

MSL
2 DN(mla"'axN)' (21)

|DN(G(y1), .- ,G(yN)) — DN(.’El,. .- ,.’EN)| S 2e S

Similar to Theorem 12, this implies that

M°L
|—DN,G(y1;---;yN) —_DN(.I‘l,...,.I‘N)| S DN(iEl,...,:ITN). (22)
The final result is
M°L
|—DN,G(y1;---;yN)| S ].+ 12 DN(iEl,...,:ITN). (23)

O

The inversion method using linear Lagrange interpolation or cubic Hermite
interpolation can be used to G-distributed low discrepancy sequences. The generation
of low-discrepancy sequences with an arbitrary distribution function G is described

in the Algorithm 14.
Algorithm 14. Inversion method using interpolation

Input data: the uniformly distributed low-discrepancy sequence (z1,...,zN);
for k=1,...,N do

Find the values z; and z};

Calculate the point yy;
end for

Output data: the G-distributed low-discrepancy sequence (y1,-..,yn)-

The method that we proposed uses some values of G, g and derivatives of g
to approximate G~!. This is an advantage, as for some distributions the expression
of G7! is not known. Note that, in our method, adding one point to the generated
sequence would not change the other elements of the sequence, which is another

advantage.
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