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ON THE EXISTENCE OF VIABLE SOLUTIONS FOR A CLASS OF
NONAUTONOMOUS NONCONVEX DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We prove the existence of viable solutions to the Cauchy
problem z’' € F(t,z),z(0) = xo in M, where F is a multifunction
and M is a convex locally compact set of a Hilbert space that satisfy
F(t,2)NK ;M NV (z) # 0, with K, M the contingent cone to M at x and

0V is the subdifferential of a convex function V.

1. Introduction

Consider H a real Hilbert space and F' : M C H — P(H) a multifunction
that defines the Cauchy problem

(1.1) ' € F(z), x(0)= o,

In the theory of differential inclusions the viability problem consists in proving the
existence of viable solutions, i.e. V¢, z(t) € M, to the Cauchy problem (1.1).

Under the assumptions that H = R", F'is an upper semicontinuous nonempty
convex compact valued multifunction and M is locally compact, in [5] Haddad proved
that a necessary and sufficient condition for the existence of viable trajectories starting

from z¢ € M of problem (1.1) is the tangential condition
(1.2) Vee M F(x)NK,M# 0,
where K, M is the contingent cone to M at x € M.
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Rossi, in [7], proved the existence of viable solutions to problem (1.1) replacing

the convexity conditions on the images on F' with
(1.3) F(z) c oV (x) Vze M,

where OV is the subdifferential, in the sense of Convex Analysis, of a proper convex
function V. In [4] condition (1.3) is improved in the sense that instead of (1.2) and

(1.3) we assume that F(.) verifies
(1.4) Fz)NK,MNoV(z)#0 Vre M,

with V" as in [7], provided M is convex.
The aim of the present paper is to extend the result in [4] to the case of

nonautonomous problems
(1.5) ¥ € F(t,x), x(0)=zo.

We note that in [6] a similar type of result is proved for a function V' that is
assumed to be lower regular, i.e. a locally Lipschitz continuous function whose upper
Dini directional derivative coincides with the Clarke directional derivative.

The idea of the proof of our result is to use the regularizing technique in [6]
and to apply the known result for autonomous problems in [4].

The paper is organized as follows: in Section 2 we recall some preliminary

facts that we need in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let H be a real separable Hilbert space and @ C H a given set. By P(H)
we denote the family of all subsets of H. A multifunction F' : Q — P(H) is called
(Hausdorff) upper semicontinuous at xzo € €, Ve > 0 there exists 6 > 0 such that
||z — x0|| < 6 implies F(x) C F(xg) + B, where B is the unit ball in H. For € > 0
we put B(x,€) ={y € H;|ly — z|| < €}.

Let V: H— RU{+o00} be a function with domain D(V) = {x € H;V (z) <
+oo}. If D(V) # 0, then f is called proper. We recall that the subdifferential (in the
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sense of Convex Analysis) of the convex function V' is the multifunction 0V : H —

P(H) defined by
oV(z)={ye H;, V(z)—V(z)><y,z—x> VzeH}.

In what follows we assume:

Hypothesis 2.1. i) F: [0,00) x M C H — P(H) is a bounded set valued
map, measurable in t, upper semicontinuous with respect to z, with nonempty closed
values.

ii) There exists a proper lower semicontinuous convex function V : H —

R U {+0c0} such that
(2.1) F(t,2) NK,MNoV(z) #0 Vaxe M, ae.tel0,00),

where K, M = {v € H; liminf,_o4 3d(z + hv, M) = 0} is the contingent cone to
M at z € M.

3. The main result

Our main result is the following.

Theorem 3.1. Let M C H be a convex and locally compact set and let
F:[0,00) x M C H— P(H) be a set-valued map satisfying Hypothesis 2.1.

Then for every xg € M there exists T > 0 such that problem (1.5) admits a
solution on [0,T) satisfying x(t) € M, Vt € [0,T].

Proof. Let zg € M. Since M C H is locally compact, there exists r > 0
such that My := M N B(xo,r) is compact. Consider L := sup ,)c(0,00)xar |[F(t: 2)|l;
define T':= 717 and take n € N such that % <T.

By regularizing the set valued map F' on the right hand side of the Cauchy
problem (1.5) we reduce the nonautonomous problem to the autonomous case ([6]).
We can find a countable collection of disjoint subintervals (a;,b;) C [0,T], j = 1,2, ...
such that their total length is less then % and a set valued map F),, defined on D :=
([0, T\ U3, (aj,b;)) x M that is jointly upper semicontinuous and F,(t,z) C F(t, )
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for each (¢,2) € D. Moreover, if u(.) and v(.) are measurable functions on [0, 7] such
that u(t) € F(t,v(t)) a.e. t € [0,T] then for a.e. t € ([0,T]\ U2, (aj,b;)) we have
u(t) € F,(t,v(t)) (we refer to [8] for this Scorza Dragoni type theorem). It is obvious
that all trajectories of F' are also trajectories of F,. We extend F), to the whole

[0,T] x M. We define

Fn(t,.’E) if te [O,T]\ U]Qil (aj,bj)
~ B Fn(aj,x) if a; <t< w
Fn(t7m) - a;4b;

Fn(bj,I) if %<t<bj

Fo(aj,z) U F,(bj,x) if t= %t

It is easy to see that F),(.,.) still satisfies the tangential condition (2.1). On
the other hand, according to Lemma 4 in [6], Fn(7) is upper semicontinuous on
[0,T] x M.

By extending the state space from H to R x H we can reduce our problem

to the autonomous case. For every (¢,z) € [0,T] X M we define

V(t,z) =t+V(x).

Obviously, V(.,.) is a proper lower semicontinuous convex function and
(1,v) € OV (t,z) if and only if v € OV (x) for all (¢, x) € [0,T] x M. At the same time,
standard arguments show that (1,v) € K ,([0,T] x M) if and only if v € K, M.
Therefore, the tangential condition (2.1) implies that

(3.1) (L, Fo(t,2)) N K10y ([0, 7] x M) N0V (t,2) #0 Y(t,z) € [0,T] x M.

Thus applying Theorem 3.1 in [4] we obtain the existence of an absolutely

continuous function z,(.) : [0,7] — H that satisfies

(1,2, (t)) € (1, Fp(t,mn(t)) NOV (t, 2, (t)) a.e. [0,T], x,(0)=z0

and

(t,xz,(t)) €10, T) x M Vte[0,T].
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It follows that ,,(.) verifies

(3.2) 2 (t) € Fp(t,xn,(t)) NV (2, (t)) a.e. [0,T], x,(0) =g
and
(3.3) zn(t) € M Yt € [0,T].

Therefore from (3.2) we have

(3-4) 25, (0]l < L.

On the other hand, from (3.3) graph(z,(.)) is contained in [0,7] x M and

x,(.) is also a solution to the inclusion (1.5) except for a set (say) E, of measure

not exceeding + for each n € N. Hence, from (3.4) and Theorem III. 27 in [3] there

exists a subsequence (again denoted by z,,(.)) and an absolutely continuous function

x(.) : [0,T] — H such that
Zn(.) converges uniformly to z(.),

2/ () converges weakly in L?([0,T], H) to 2'(.).

Since V(.) is lower semicontinuous, it follows that graph(0V') is closed and

thus, by (3.2), one has
(3.5) 2/ (t) € OV (x(t)) a.e. [0,T].
We apply Lemma 3.3 in [2] and by (3.5) we obtain
(V(z(1) =< 2'(t),2'(t) >=[|2'()I]* a.e. [0,T];
and thus, V(z(T)) — V(o) = fOT |2/ (t)]|2dt.
On the other hand, from (3.2) we deduce that
T T
| IR = [ 0wy @t = Viaa(T) ~ Vizo).
0 0

Hence, by the lower semicontinuity of V, we get
T T
lim [ ||z, ()| [*dt = V(2(T)) — V(o) =/ |2’ (t)]|dt
0 0

n—oo

and so {z/,(.)} converges strongly in L?([0,T], H).
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Hence, there exists a subsequence (still denoted) 2/, (.) which converges point-

wise almost everywhere to z'(.). From (3.2) and the fact that graph(F) is closed we

have

2'(t) € F(t,z(t)) a.e. [0,T)]

and from (3.3) we obtain that V¢ € [0,T], z(t) € M.
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