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QUANTITATIVE APPROXIMATIONS
BY USING SCALING TYPE FUNCTIONS

OCTAVIAN AGRATINI

Abstract. The focus of the paper is to study a class of linear positive

operators constructed by using a quasi-scaling type function. Jackson type

inequalities are established in the framework of different function spaces.

1. Introduction

In Approximation Theory an interesting tool with a rich mathematical con-

tent and great potential for applications, is materialized by sequences of linear positive

operators generated by a scaling type function.

The aim of the present note is to investigate a general class (Lk)k∈Z of linear

positive operators of wavelet type. Our paper is designed as follows. Following [1], in

Section 2 we recall the construction of Lk, k ∈ Z, operators and we indicate the main

notations and results which will be used in the sequel. Further on, in Section 3 we use

this class to approximate smooth real valued signals, more precisely, functions which

possess derivatives of high order. We establish both pointwise and global estimates

of the rate of convergence of our operators. Under additional assumptions, we prove

that each γ−2δ−1Lk operator has the degree of exactness equal to 1. The last section

is devoted to estimate the approximation of bounded functions by Lk, with the help

of a Lipschitz-type maximal function.

Clearly, the research along a certain line can be developed by different angles.

We point out that our approach is made by using tools and methods which characterize
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the approximation of functions by linear positive operators. Similar results are quite

familiar in the Littlewood-Paley and wavelets literature. A good illustration of this

can be found in Daubechies’ book [4; Section 6.5] and elsewhere.

2. Background and preliminaries

Setting N0 := N∪{0}, we consider a bi-dimensional net (ak, δj), (k, j) ∈ Z×Z,

δ ∈]0,∞[, and

a−k = a−1
k , 0 < ak < ak+1, for every k ∈ N0. (1)

Clearly, a−(p+1) < a−p for each p ∈ N0 and a0 = 1. We point out that the

above net generalizes the couples (2k, j), (k, j) ∈ Z×Z, broad used in the construction

of many wavelet type discrete operators. Operating both on the sequence (ak)k∈N0

and on the ratio δ, we are able to transform the net in accordance with the problem

data and, therefore, it is more flexible then the previous one.

Let L1,loc(R) be the vector space of the real-valued functions defined on R

and locally integrable, i.e. integrable on any compact interval of the real line. We

make the following informal definition.

Definition 2.1. Let δ > 0 be fixed. A function ϕ : R → [0,∞[ satisfying the following

conditions:

(i) ϕ is a bounded function belonging to L1,loc(R),

(ii) a positive constant α exists such that supp(ϕ) ⊂ [−α, α], (2)

(iii) a positive constant γ exists with the property
∞∑

j=−∞
ϕ(x + δj) = γ, for every x ∈ R, (3)

is called a scaling function of (δ, γ) type.

Using the sequence (ak)k∈Z defined by (1) and a scaling function ϕ of (δ, γ)

type we generate the functions

ϕk,j(x) :=
√

ak ϕ(akx + δj), x ∈ R, (k, j) ∈ Z× Z. (4)

As usual in wavelet transforms, k is named the dilation index and j is named

the translation index. Dilation by larger k compresses the function ϕ on the x-axis.
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Altering j has the effect of sliding the function ϕ along the x-axis. We mention that

condition (3) has nothing to do with the property of an orthogonal scaling function

of a multiresolution analysis (MRA), intensively used in the signals theory.

At this point we are in position to introduce the announced sequence of

operators.

For every k ∈ Z and f ∈ L1,loc(R) we define the operator Lk as follows

(Lkf)(x) :=
∞∑

j=−∞
(f, ϕk,j)ϕk,j(x), x ∈ R, (5)

where the functions ϕk,j are given by (4) and (f, ϕk,j) =
∫

R
f(t)ϕk,j(t)dt.

As usual, we denote by C(R) (B(R), respectively) the space of all continuous

(bounded, respectively) real valued functions on R. The spaces B(R) and B(R)∩C(R)

can be equipped with the norm ‖ · ‖∞ of the uniform convergence (briefly, the sup-

norm). Also Lp(R), p ≥ 1, stands for the vector space of all real valued Lebesgue

integrable functions defined on R endowed with the usual norm ‖ · ‖Lp(R). In the

Hilbert space of square integrable functions, the inner product is denoted by (·, ·).

Examining Definition 2.1 we deduce that ϕ belongs to the Lebesgue space

L2(R). The same statement is true for ϕk,j . Also, for each (k, j) ∈ Z×Z the coefficient

(f, ϕk,j) exists and is finite. Because of the function ϕ has bounded support, for any

real x the summation in (5) involves only a finite number of terms and, consequently,

(Lkf)(x) is well-defined on R.

A more explicit look of Lkf is the following

(Lkf)(x) =
∞∑

j=−∞
ϕ(akx + δj)

∫
supp(ϕ)

ϕ(u)f
(

u− δj

ak

)
du. (6)

The construction of Lkf guarantees that Lk is a positive linear operator.

In the particular case ak = 2k this operator becomes the operator Ak studied

in [3]. The authors have used a scaling function ϕ of (1,1) type.

As regards Lk operator, a result presented in [1; Theorem 1] will be read as

follows.
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Proposition 2.1. Let Lk, k ∈ Z, be defined by (5). For every function f ∈ C(R) the

following inequality

|(Lkf)(x)− γ2δf(x)| ≤ γ2δω(f ; 2αa−k), k ∈ Z, x ∈ R,

holds true, where α is given at (2) and ω(f ; ·) represents the modulus of continuity

associated to f .

Further on we collect some direct properties of the functions ϕ and ϕk,j .

Lemma 2.2. If ϕ is a scaling function of (δ, γ) type then one has

(i) ‖ϕ‖L1(R) =
∫

R
ϕ(x)dx =

∫
R

ϕ(x + δj)dx = γδ, j ∈ Z; (7)

(ii)
γδ√
2α

≤ ‖ϕ‖L2(R) ≤
√

γδ sup
x∈R

ϕ(x);

(iii) ‖ϕk,j‖L1(R) = √
a−kγδ, ‖ϕk,j‖L2(R) = ‖ϕ‖L2(R).

Since the proof is based on simple computations, we omit it.

We end this section proving that Lk enjoys the self-adjointness property on

the Hilbert space L2(R).

Lemma 2.3. For every f and g belonging to L2(R), the operator Lk defined by (5)

verifies (Lkf, g) = (f, Lkg).

Proof. We can write successively

(Lkf, g) =
∑
j∈Z

∫
R

(∫
R

ϕk,j(t)f(t)dt
)
ϕk,j(x)g(x)dx

=
∑
j∈Z

(∫
R

ϕk,j(t)f(t)dt
)
(g, ϕk,j) = (f, Lkg).

3. Estimates for high order differentiable functions

In most practical problems, the functions possess some degree of smoothness.

Letting Cn(R), n ∈ N, the space of n-times continuously differentiable real

valued functions defined on R, we are concerned to give bounds for the approximation

error |Lkf − f |, where f ∈ Cn(R).
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At first step we recall the Taylor formula. If f ∈ Cn(R) then the following

identity

f(y) =
n∑

i=0

f (i)(x)
i!

(y − x)i +
1

(n− 1)!

∫ y

x

(f (n)(t)− f (n)(x))(y − t)n−1dt (8)

holds true for every (x, y) ∈ R× R.

At second step we need a technical result useful in the proof of Theorem 3.2.

Lemma 3.1. Let ϕ be a scaling function of (δ, γ) type. Let fix (x, ak) ∈ R×]0,∞[

and define
Jk,x := {j ∈ Z| akx + jδ ∈ [−α, α]},

rn(f ; ak, x, t) :=
∣∣∣∫ t/ak

x

(f (n)(u)− f (n)(x))
(

t

ak
− u

)n−1

du
∣∣∣, f ∈ Cn(R)

(9)

For each j0 ∈ Jk,x and each t ∈ [−α− j0δ, α− j0δ], the following inequalities

hold

(i)
∣∣∣∣ t

ak
− x

∣∣∣∣ ≤ 2α

ak
, (ii) rn(f ; ak, x, t) ≤ 1

n

(
2α

ak

)n

ω

(
f (n);

2α

ak

)
. (10)

Proof. Since −2α + akx ≤ −α − j0δ ≤ t ≤ α − j0δ ≤ 2α + akx, the first relation is

evident. In order to prove the second inequality, we shall analyze 2 cases taking in

view the first inequality of this Lemma.

Case 1. x < t/ak. We have

rn(f ; ak, x, t) ≤
∫ t/ak

x

|f (n)(u)− f (n)(x)|
(

t

ak
− u

)n−1

du

≤
∫ t/ak

x

ω(f (n); |u− x|)
(

t

ak
− u

)n−1

du

≤
∫ t/ak

x

(
t

ak
− u

)n−1

du ω

(
f (n);

∣∣∣∣ t

ak
− x

∣∣∣∣)
≤ 1

n

(
t

ak
− x

)n

ω

(
f (n);

2α

ak

)
.

Case 2. x > t/ak. Following the same line, we get

rn(f ; ak, x, t) ≤
∫ x

t/ak

|f (n)(u)− f (n)(x)|
(

u− t

ak

)n−1

du
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≤
∫ x

t/ak

ω(f (n); |u− x|)
(

u− t

ak

)n−1

du

≤
∫ x

t/ak

(
u− t

ak

)n−1

du ω

(
f (n);

∣∣∣∣ t

ak
− x

∣∣∣∣) ≤ 1
n

(
x− t

ak

)n

ω

(
f (n);

2α

ak

)
.

In both cases, taking again the advantage of the first inequality we obtain

the desired result. The case x = t/ak is trivial and the proof is complete.

We present the main result of this section.

Theorem 3.2. Let f ∈ Cn(R). For every x ∈ R the operators Lk, k ∈ Z, defined by

(5) verify

|(Lkf)(x)− γ2δf(x)|

≤ γ2δ

(
n∑

i=1

|f (i)(x)|
i!

(
2α

ak

)i

+
1
n!

(
2α

ak

)n

ω

(
f (n);

2α

ak

))
. (11)

Proof. Let fix x ∈ R and k ∈ Z. Successively based on (5), (3), (4) and (9) we get

|(Lkf)(x)− γ2δf(x)| =
∣∣∣∑

j∈Z
(f, ϕk,j)ϕk,j(x)− γδf(x)

∑
j∈Z

ϕ(akx + jδ)
∣∣∣

≤
√

ak

∑
j∈Jk,x

|(f, ϕk,j)− γδ
√

a−kf(x)|ϕ(akx + jδ). (12)

In the above we also used (1). It is obvious that, in what follows, we are

interested only on the indices j belonging to Jk,x.

With the help of relations (4) and (7) we can write

|(f, ϕk,j)− γδ
√

a−kf(x)|

=
∣∣∣√a−k

∫
R

f

(
t

ak

)
ϕ(t + δj)dt−√

a−kf(x)
∫

R
ϕ(t + δj)dt

∣∣∣
≤ √

a−k

∫
R

∣∣∣∣f ( t

ak

)
− f(x)

∣∣∣∣ϕ(t + δj)dt. (13)

Choosing in (8) y := t/ak, t ∈ [−α− jδ, α− jδ], and using both (9) and (10)

we have∣∣∣∣f ( t

ak

)
− f(x)

∣∣∣∣ ≤ n∑
i=1

|f (i)(x)|
i!

∣∣∣∣ t

ak
− x

∣∣∣∣i +
1

(n− 1)!
rn(f ; ak, x, t/ak)

≤
n∑

i=1

|f (i)(x)|
i!

(
2α

ak

)i

+
1
n!

(
2α

ak

)n

ω

(
f (n);

2α

ak

)
.
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Returning on (13) and further on (12), we obtain the claimed result.

Letting Cn
b (R) := {f ∈ Cn(R)| f (i) ∈ B(R), 0 ≤ i ≤ n}, relation (11) leads

us to the following global estimate of the error.

Theorem 3.3. For every f ∈ Cn
b (R), the operators Lk, k ∈ Z, defined by (5) verify

‖Lkf − γ2δf‖∞ ≤ γ2δ

(
n∑

i=1

βi
k

i!
‖f (i)‖∞ +

βn
k

n!
ω(f (n);βk)

)
, (14)

where βk := 2αa−k.

In the above, under the hypothesis lim
k→∞

ak = ∞, one has βk < 1 for suffi-

ciently large k. Considering the semi-norm | · |Cn
b (R) of the vector space Cn

b (R) defined

by |h|Cn
b (R) :=

n∑
i=1

‖h(i)‖∞, relation (14) implies

∥∥∥∥ 1
γ2δ

Lkf − f

∥∥∥∥
∞
≤
(

2α

ak

)(
|f |Cn

b (R) + ω

(
f (n);

2α

ak

))
,

for every f ∈ Cn
b (R) and sufficiently large k.

4. On the degree of exactness

In what follows, for any integer s ≥ 0 we denote by es the test function

defined by es(x) = xs, x ∈ R.

Under an additional assumption, we prove that the operator (1/γ2δ)Lk re-

produces the affine functions, in other words it has the degree of exactness equal to

1. We assume that the scaling function ϕ of (δ, γ) type has the following property

∞∑
j=−∞

jϕ(x + δj) = −γ

δ
x, x ∈ R. (15)

Lemma 4.1. Let ϕ be a scaling function of (δ, γ) type such that condition (15) is

fulfilled. One has ∫
R

uϕ(u)du = 0. (16)
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Proof. We observe that∫
R

uϕ(u)du =
∑
j∈Z

∫ δ(j+1)

δj

uϕ(u)du =
∑
j∈Z

∫ δ

0

(x + δj)ϕ(x + δj)dx

=
∫ δ

0

x
(∑

j∈Z
ϕ(x + δj)

)
dx + δ

∫ δ

0

(∑
j∈Z

jϕ(x + δj)
)
dx.

Taking into account identities (3) and (15), the proof is finished.

We come now to the main result of the section.

Theorem 4.2. Let Lk, k ∈ Z, be defined by (5) such that (15) is fulfilled. For every

real-valued polynomial p of degree less or equal to 1, one has Lkp = γ2δp.

Proof. Obviously, it is enough to verify the claimed identity only for the monomials

e0 and e1. For computations we use the formula given at (6).

Based on (7) and (3) one gets Lke0 = γ2δe0. The same quoted relations

together with (16) guarantee that Lke1 = γ2δe1. The conclusion follows.

At this moment, the idea to present Lke2 comes out. In order to achieve it,

we introduce the function θ given by

θ(x) =
∞∑

j=−∞
j2ϕ(x + δj), x ∈ R. (17)

Since (2) takes place, the above sum is finite and θ is well-defined. Moreover,

θ is non-negative and belongs to L1,loc(R).

Theorem 4.3. Let Lk, k ∈ Z, be defined by (5) such that (15) is fulfilled. If θ is

given by (17) then the following identities hold true

(i) (Lke2)(x) =
γ

a2
k

(‖e2ϕ‖L1(R) + δ3θ(akx)), x ∈ R, (18)

(ii) ‖e2ϕ‖L1(R) = δ2

∫ δ

0

θ(t)dt− γ

3
δ3.

Proof. (i) Clearly, e2ϕ ∈ L1(R). Resorting to (6) we can write

(Lke2)(x)=
1
a2

k

∑
j∈Z

ϕ(akx + δj)
(
‖e2ϕ‖L1(R) − 2δj

∫
R

uϕ(u)du + δ2j2‖ϕ‖L1(R)

)
.

Taking in view relations (16), (7), (3) and (17) we obtain (18).
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(ii) Since ‖e2ϕ‖L1(R) =
∑
j∈Z

∫ δ(j+1)

δj

u2ϕ(u)du =
∑
j∈Z

∫ δ

0

(t + δj)2ϕ(t + δj)dt,

with the help of (3), (15) and (17), our statement is proved.

5. Estimates for bounded functions

Based on (6) and (3) we can remark in passing that

‖Lkf‖∞ ≤ γ2δ‖f‖∞, for every f ∈ B(R) ∩ L1,loc(R).

Consequently, for γ2δ < 1 each operator Lk is a contraction.

The aim of this section is to give bounds for error approximation by using a

Lipschitz-type function introduced by Lenze [5; Eq. (1.5)]. We recall this map we will

have to deal with. Let J ⊂ R be an interval. Let f ∈ RJ be bounded and µ ∈]0, 1].

The Lipschitz-type maximal function of order µ associated to f is defined as

f∼µ (x) := sup
t6=x
t∈J

|f(t)− f(x)|
|t− x|µ

, x ∈ J. (19)

The local behaviour of function f can be measured by f∼µ . The finiteness of

f∼µ gives a local control for the smoothness of f . Roughly speaking, the boundedness

of f∼µ is equivalent to f ∈ Lipµ on J .

Theorem 5.1. Let Lk, k ∈ Z, be defined by (5) such that (15) is fulfilled. For every

µ ∈]0, 1] and f ∈ B(R) ∩ L1,loc(R) the following inequality

|(Lkf)(x)− γ2δf(x)| ≤ Mϕ

(
α2

3a2
k

+
δ2

γa2
k

θ(akx)− x2

)µ/2

f∼µ (x), x ∈ R,

holds true, where Mϕ = γ(2α)µ/2‖ϕ‖Lp([−α,α]), p = 2/(2− µ) and θ is given at (17).

Proof. Let fix x ∈ R and k ∈ Z. In what follows, for the sake of simplicity, we set

(Ik,jϕ)(x) :=
∫

R

∣∣∣∣ t

ak
− x

∣∣∣∣µ ϕ(t + δj)dt,

ck,j(x) :=
∫

supp(ϕ)

(
t− δj

ak
− x

)2

dt, (j ∈ Z),
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and

sk(x) :=
∑
j∈Z

ck,j(x)ϕ(akx + δj).

In concordance with formula (19) we write

|f(t/ak)− f(x)| ≤ f∼µ (x)|t/ak − x|µ.

Taking the advantage of relations (12) and (13), one obtains

|(Lkf)(x)− γ2δf(x)| ≤
∑
j∈Z

∫
R

∣∣∣∣f ( t

ak

)
− f(x)

∣∣∣∣ϕ(t + δj)dtϕ(akx + δj)

≤ f∼µ (x)
∑
j∈Z

(Ik,jϕ)(x)ϕ(akx + δj).

By using Hölder’s integral inequality with parameters q := 2/µ and p :=

2/(2− µ), we deduce

(Ik,jϕ)(x)

=
∫

supp(ϕ)

∣∣∣∣u− δj

ak
− x

∣∣∣∣µ ϕ(u)du ≤ c
µ/2
k,j (x)

( ∫
supp(ϕ)

ϕ2/(2−µ)(u)du
)(2−µ)/2

. (21)

The last quantity represents ‖ϕ‖Lp([−α,α]), see (2).

Further on, based on Hölder’s discrete inequality with the same parameters

q, p, we have∑
j∈Z

c
µ/2
k,j (x)ϕ(akx + δj) =

∑
j∈Z

(ck,j(x)ϕ(akx + δj))µ/2ϕ1−µ/2(akx + δj)

≤
(∑

j∈Z
ck,j(x)ϕ(akx + δj)

)µ/2(∑
j∈Z

ϕ(akx + δj)
)(2−µ)/2

= γ(2−µ)/2s
µ/2
k (x). (22)

In order to evaluate sk(x), we shall use (3), (15), (18) and (2).

sk(x) =
1
a2

k

∫
supp(ϕ)

∑
j∈Z

(t− δj − akx)2ϕ(akx + δj)dt

=
1
a2

k

∫
supp(ϕ)

(t2γ + δ2θ(akx)− a2
kγx2)dt ≤ 2αγ

a2
k

(
α2

3
+

δ2

γ
θ(akx)− a2

kx2

)
. (23)

Collecting (23), (22), (21) and substituting in (20) we finish the proof.
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Remarks. (i) In the particular case γ = δ = 1, ak = 2k, Lk turns into Anas-

tassiou’s original operator Ak, [2; §6.1]. As far as we know, Theorem 5.1 establishes

a new result for Ak which involves Lenze’s function.

(ii) For comparison, it is a standard fact in Littlewood-Paley theory that if f

and ϕ are both Hölder continuous of order µ > 0 and if ϕ has compact support then

the µ-Hölder norm of Lkf − f decays like 1/ak.

(iii) Regarding this note, we mention that a similar approach could be made

by considering the following (La)a>0 net of operators, Laf :=
∑
j∈Z

(f, ϕj,a)ϕj,a with

ϕj,a(x) =
√

aϕ(ax + jδ). The estimates would be exactly the same.
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