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ON THE NUMERICAL SIMULATION
OF A LOW-MACH NUMBER FLOW

I. GASSER, J. STRUCKMEIER, AND IOAN TELEAGA

Abstract. In the present work we investigate numerically a flow model
used to simulate convection problems such as tunnel fires. This model is
based on an asymptotic approach for Navier-Stokes equations first derived
in [2]. We will show that this model is capable to combine the low-Mach
number limit with large temperature gradients. Two sets of calculations
are included in this work to show the capabilities of the proposed model

and also the usefulness of the standard Boussinesq approximation.

1. Introduction

Because of many fire accidents in tunnels, the interest in the description,
modeling and the simulation of such events has been increased in the last years. In
practice, to simulate a complete fire accident is not possible due to many parameters
involved: the tunnel geometry, the number of cars inside, the intensity and position
of the fire, ventilation rules etc. In time two main features of fire events have been
observed, namely characteristic velocities in the tunnel of the order of 1m/s and
characteristic temperature differences which are quite large [1].

In [2], [3] and [4] a mathematical model which combines these two features has been
developed and numerically tested. The modeling starts with the description of the air

flow using the compressible Navier-Stokes equations. Then, using appropriate scales
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(see [2]), the two-dimensional compressible system is written as:

(p)t + div(pu) = 0 (1)
ur + (u-V)u + (7M2)_1%Vp = % <Re_1A'u. + R’ V(dw(u))) +f
(pT)s + div(upT) + (y — V)pdiv(u) = ~yPr 'Re 'AT +q

where p,u,p, and T represent the density, the velocity field, the pressure and the
temperature, respectively. The functions f, g are the external force (e.g gravity) and
the heat source due to the fire which acts as a volume indicator function over the fire.
The dimensionless constants v, M, Re, Pr and Fr are the adiabatic exponent, the
Mach number, the Reynolds number and the Prandtl number, respectively. All these
quantities and reference values are detalied in [2].

Since M <« 1, a compressible flow solver will suffer severe deficiencies, both in effi-
ciency and accuracy. Two distinct techniques have been proposed to capture solution
convergence for low-Mach number flows: preconditioning and asymptotic expansion
methods. In fact these techniques rescale the condition number of the system. The
first one is to multiply time derivatives by suitable preconditioning matrix, in the
sense that they scale the eigenvalues of the system to similar orders of magnitude and
remove the disparity in wave speeds, leading to a well-conditioned system [5].

In this work, we will follow the second technique, the asymptotic or perturbation
method. This approach consists in a Taylor series expansion of variables (in our case
the pressure) in power terms of the Mach number. The basic philosophy behind this
technique is to decrease the numerical representation of the speed of sound artificially,

by substracting a constant pressure py across the entire domain:
p=po+ (YM*)p1 + O((yM?)?),

where pg is the ground pressure and p; is the fluctuation pressure part. It turns out
that the ground pressure can be only a function of time, i.e pg = po(t), but since the
tunnel is a open domain this ground pressure will also not change in time. Therefore,
considering py = constant and that in leading order we have T' = po/p, the system

52



ON THE NUMERICAL SIMULATION OF A LOW-MACH NUMBER FLOW

(1) can be rewritten as [2]

(p)t + div(pu) = 0 (2)

us + (u-V)u + %Vpl = % (Re_lAu + fre” V(div(u))) +f (3)
) = r~1Re™! 1 4

div(u) = yPr—R A(p) + P (4)

This system represents a density-dependent flow with a non-vanishing divergence of
the velocity field.
The system (2)-(4) is solved numerically by a modified first order projection method

described in [3]. For the numerical scheme we prescribe the following boundary con-

ditions

ou

%(m,t) = 0, zel'1UT;
u(xz,t) = 0, el UTy
plx,t) = po, ifu(x,t)>0, xzel,
plx,t) = p1, ifu(z,t)<0, xel;
p(mat) = Do, T c I‘1
p(mat) = D1, T c FS

. 1 = Re! ) . .

Vp-ii = P Re "Au + V(div(uw)) | -+ f-f, xe€lUTly

where I'1, I'3 denote the entrance and the exit of the tunnel and I's, T'y the lower and

upper fixed walls, respectively.

2. The validity of the Boussinesq approximation in the case of large

temperature differences

The Boussinesq approximation starts by considering the compressible Navier-
Stokes equations for fluid flow. At this stage all fluid properties are assumed to be
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functions of temperature T and presssure P, i.e.

p=p(T,P),
p=u(T,P),
k = k(T, P)

¢p = (T, P)

a=a(T,P)

Because these functions are not known completely, one assumes that each function

may be approximated by a first order Taylor expansion, i.e.

p = p(l=—o(T-T)+p(P—-F))
¢, = cp(l+an(T—T,)+b.(P—P))
po= pr(l+e(T=T0)+d (P —F))
a = a(l+e(T—T,)+ fr(P—P))
ko= kA+m(T-T)+n(P—F)) (5)

with x, = (pr, ¢p,, tbr, @r, kr) where w, = (ay, ar, ¢, e,,m,) represents the reference

states of (1/x,)0x,./0T and y, = (B, by, d;, fr,n,) represents the reference states of

(1/x,)0x, /0P, respectively.

According to [6] the following criteria must be checked in order to ensure the validity

of the Boussinesq approximation:

¢ = |ard] <0.1,

c3 = |8 <0.1,

cs = |ar0] <0.1,

c7 = |m,0) <0.1,

co = |e,f] <0.1,

argL

611:| |§01

CPO

54

c2 = |BrprgL| <0.1 (6)

cs = |drprgL| <0.1 (7)

ce = |brprgL| < 0.1 (8)

cs = [nrprgL| < 0.1 9

c10 = | frorgL] < 0.1 (10)

ey = |OérgLTr| <01 (11)
Cpo
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a,gL

013=|

|(PrRa™")'/? < 0.1(Pr Ra)™'/? (12)
Po

where 6, g, L are the maximal temperature variations around 7, the gravitational

force and the reference length, respectively. In the case of air at 7, = 15°C and

P, = 10°Pa the following values for the criteria ¢; — ¢11 are given in [6]:

C1 (&) C3 C4 Cs Ce

3.5-107%0 | 1.2-1075L [ 2.8-10730 | 0 | 4.5-107°0 | 2.3-107°L

Cr g Co C10 C11

24-107%9| 0| —-36-10°%9| 0 |3.6-107"L

If the maximal temperature difference 6 is very large (e.g. 1000°C) then it is quite
easy to check that the criteria ¢1, c3, ¢7, cg are not fullfiled, hence the Boussinesq

approximation does not apply.

3. Numerical results

In the following we will compare the numerical results in the case of two
realistic tunnel fire events described in [3] with the Boussinesq approximation [6]. In
both cases the heat source is placed exactly in the middle of the tunnel and it is

distributed over a rectangular area of size 10 m x 4 m.
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Figure 1. Vertical temperature profiles (in °C) for a tunnel without slope 100 m left
and right from the heat source at various times: (a) the low-Mach number model
(1), (b) the standard incompressible Navier-Stokes model with Boussinesq

approximation.

3.1. Tunnel without slope. The tunnel configuration data are listed in Table I.
More information about the numerical method and other relevand data are given in
[3]. Figure 1 show the temperature profiles along a vertical axis, which is placed 100
m to the left and right of the middle of the tunnel in the case of the low-Mach number
model (1) (1a), and the standard Boussinesq approximation model (1b). First of all
the results show that the flow field is symmetric with respect to the location of the

heat source.

Table I. Test configuration

Length 1000m
Height 10m
Heat source 1MW
Initial velocity 0.0

Pressure difference(bottom-top) 120Pa
Re number 2500

Simulation time 30 min
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Figure 2. Vertical temperature profiles (in °C) for a tunnel without slope 100 m left
and right from the heat source at various times: (a) the low-Mach number model
(1), (b) the standard incompressible Navier-Stokes model with Boussinesq

approximation.

If we compare the Figure (1a) with the Figure (1b) we see that the temperature fronts
are moving with different velocities, i.e. the velocity coming from the Boussinesq
approximation model is lower than in the low-Mach number model (1). This fact is
clear in the literature where it is claimed that the bouyancies forces are not so strong
when simulated with the Boussinesq approximation model. Indeed because the heat
transfer towards the tunnel ends is not so fast as in the low-Mach number model, the
temparatures in the Boussinesq approximation are higher.
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3.2. Tunnel with slope. As in the previous example the tunnel configuration data
are listed in Table I. The only modification here is that the tunnel has a slope of 3%
upwards from the left to the right end. The same features of both simulations are

seen also in this case (see Figure 2a,b).

4. Conclusions

Mathematical models which describe fire accidents in tunnels should model
low-Mach number flows together with large temperature gradients. In the present
paper we compared the low-Mach number model proposed in [3] with the standard
Boussinesq approach for fluid flow in the case of two fire examples. As written in Table
I we do not use the real Reynolds number, indeed the numerical examples presented
here have not to be seen as a comparison with the real experiment data. This is
a preliminary step in this direction. The effect of turbulence will be the subject of

further investigations.
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