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THE P-LAPLACIAN OPERATOR ON THE SOBOLEV SPACE W!?(Q)

JENICA CRINGANU

Abstract. In this paper p-Laplacian operator is defined on W?(Q) in
connection with the duality mapping of W?(Q).

1. Introduction and preliminary results

Let Q be an open bounded subset in R, N > 2, with smooth boundary
and 1 < p < 0.

We shall use the standard notations:

Whe(Q) = {u e LP(Q): g“

€LP(Q),i= l,N},

L

equipped with the norm

ou
6:@-

N P
lll? = llullf, + > :
i=1 0.p
where ||-||07p is the usual norm on LP(f2).
It is well known that (Wl’p (Q), ||-||17p) is separable, reflexive and uniformly
convex Banach space (see e.g. [1], theorem 3.5).
If u € WHP(Q) we can speak about u|gq in the sense of the trace: there is
a unique linear and continuous operator v : W1P(Q) — Wl_%’p(aﬂ) such that v is

surjective and for u € WHP(Q) N C(Q) we have yu = uaq.
Then the closure of C§° () in the space W1P(Q) is

WP (Q) = {u e W'(Q) : ulpg = 0} = Kerry.
The dual space (W,"*(Q))* will be denoted by W1 (Q), where % + % =1.

Received by the editors: 17.11.2004.
2000 Mathematics Subject Classification. 46E50, 35J35.

Key words and phrases. p-Laplacian, duality mapping, Sobolev space.

25



JENICA CRINGANU

For each u € W1P(Q2) we put

Ju Ou ou ?
vu_(@a:l’ﬁxg"“’ﬁzjv) ,  |Vu| = (Z (633))

i=1

and let us remark that

2 0 /
Vul € LP(Q) , |V 2573 eL’(Q), i=T1,N.
By the Poincaré inequality
[ullg,, < const (2, N)[|Vullo, , for all u € WyP(Q)

the functional

WoP(9) 3 u— |lull, = |Vullop

is a norm on W, (), equivalent with [ lwre () -
The p-Laplacian operator Apu = div (|Vu\p_2 Vu) may be action (see [2] or
[6]) from W, P(Q) into W12 (Q) by

< -Dpuv> = / VulP ™ VuVo , for u,v € Wy (Q).
Q

Now we define the p-Laplacian operator on the space W1P(Q).

We define a new equivalent norm on the space W1P(Q):

ou :
byt IVl = [ Jul+ /( ((%))

The space (WP(Q), ||| -[||l1,5) is separable, reflexive and uniformly convex

lulll7

Banach space (see [5]).
The dual norm on (W?(Q),||| - |||, ,)* is denoted by ||| -
If uw € WhP(Q) and div (|Vu|pi2 Vu) e L” (Q) we can speak about

|Vu|P~? u ‘BQ and |Vu[P~? Gu |8S2 ew ”’(69) is defined (see [5] and [8]) by
2 0 _ -
< |Vul? gu ,v|aa > :/ V|’ % VuVu +/ div (|Vu|p 2Vu) v
Inlog Q Q

(V) v e WhP(Q).
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If |VulP 2 4], = 0 it follows that
/ —div <|Vu|p_2 Vu) v = / [VulP~? VuVu, (V) v e WHP(Q).
Q Q

Because the integral [, |Vul’™> VuVu exists for each u,v € WhP(Q) we

define the operator
=Dy s (W) I Mll1,p) — (WEPQ), 1] [],,)" by

< —Apu,v >= / IVulP~? VuVu | for all u,v € WHP(Q).
Q

Let us remark that if u € W?(Q) then —Ayu € (WH2(Q), ]| - [[[1,)* -
Indeed, if u € WP(Q) the application WP (Q) 3 v =< —A,u,v > is linear

and, since for all v € WhP(Q):

< —Apu,v>| = / IVulP~? VuVu §/ [VulP~! |V <
Q N Q l
< (Lrvar)” (L) <l ol
it follows that —Apu € (W'2(Q), || - [[]1,)*.

2. Basic results concerning the duality mapping

Let (X,||-||) be a real Banach space and X* its dual.
For a multivalued operator A : X — P(X™*), the range of A is defined by

R(A) = |J Ae,
z€D(A)

where D(A) = {x € X : Az # ¢} is the domain of A.

The operator A is said to be monotone if
<zl —ah, 11 —x9>>0, for all 1,29 € D(A) and

x] € Axy, x5 € Axs.

A continuous function ¢ : R4 — Ry is called a normalization function if it
is strictly increasing, ¢ (0) = 0 and ¢ (r) — oo with r — oo.
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By duality mapping corresponding to the normalization function ¢, we mean

the set valued operator J,, : X — P(X*) defined by
Jor ={z" € X" :<a™x >= o ([lzl) =]l , =" = ¢ (=D} ,

for x € X.
By the Hahn-Banach theorem one has that D (J,) = X.
We need of the following result:
Theorem 2.1. If ¢ is a normalization function, then:
(i) for each x € X, J,x is a bounded, closed and convex subset of X*;

(ii) J, is monotone:
<@y —xy, a1 — w2 >2 (@ ([21]) — @ (l22]) (]l = llz2l)) = 0,

for each x1,70 € X and x7 € J,ox1, T5 € Joxo;
(i1t) for each x € X, Jox = 0P (z), where P (x) = OHwH p(t)dt and
0% : X — P(X™) is the subdifferential of ® in the sense of convex analysis, i.e.

0P (x)={z" e X" :0(y) —P(z) ><z"y—ax> , (V) ye X}.

For proof we refer to Browder [3], Lions [7], Cioranescu [4].
Remark 2.1. We recall that a functional f : X — R is said to be Gateaux
differentiable at = € X, if there exists f/(x) € X* such that

o F@ ) — f(2)

t—0 t

=< f'(z),h > , for all h € X.

If the convex function f : X — R is Gateaux differentiable at € X then
of(x) = {f'(@)}.

For example, if X = (W, *(), [l ), 1 < p < ooand p(t) =tP~", then (see
e.g. [6] or [7]) the duality mapping J,, on the space W, (Q) is exactly the p-Laplacian
operator —A,

Jop W()Lp(Q) - Wﬁl’p,(Q)a

Jou=—Apu , (V) u € WyP(Q).
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The surjectivity of the duality mapping (see [6]) achieves the existence of the
W, P (€2)-solution for the equation —A,u = f, with f € W17 ().
3. The main result

In the sequel, W'?() will be endowed with the norm ||| - [||; -
Theorem 3.1. The duality mapping on the space (WP (Q), |- |l, ), corre-

sponding to the mnormalization function ¢(t) = tP~1, 1 < p < oo, is the single-valued

map
Jo = WP llp) = W@ )7
Jou=—Dpu+|ul’ > u , for each ue WHP(Q)
where —A,, is the p-Laplacian operator on the space (W2(Q), ||| - ]|, ,)-
Proof. By the theorem 2.1. J,u=90® (u), (V) ue Wh?(Q), where
o o (W)l [ll,) = R @) = [ e@d = L, = L
+1 [Vl and 9« (W), |||1,p> = P (W@ ][l )°) i the subdit:

ferential in the sense of convex analysis.

We define the functionals
&, . L'(Q) - R, &(u)= H I, = / fuf?
By WIP(Q) - R, By(u) = f||v I, / Vuf?

and @1 : WhP(Q) — R, & = &1 /WP (Q)

The functional ®; is Géateaux differentiable (see [9]) and
< @ (u),v >=< |ul" " sgnu,v >, for all u,v € L? (Q).

By the imbedding (W'#(), - |||,.,) — (LP ), ||.H0,p) we have that ®, is
Gateaux differentiable on (W'2(), ||| - [l], ).

Let the operator P : W1P(Q) — LP (Q) be defined by P(u) = |Vu].

If u e WHP(Q),u = 0, then < ®5(0),v >=0, (V) v € WhP(Q).

If u # 0, a simple computation shows that

Vu- Vv

T (V) v e WhHP(Q).

< P'(u),v >=
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Since the functional W?(Q) 3 v —< P’(u),v > is linear and

< [1vel < meas )7 ([ 1vep)” <
Q Q

< c|||v|||1,p, where ¢ = (meas Q)?", it follows that the operator P is Géateaux differ-

Vu- Vv

|< P'(u),v >| = —_—
=) v

entiable at u.
Since ® = ®,0P one has that the functional @, is Gateaux differentiable at

u and

< By(u),v >=< &, (Pu),< P'(u),v >>=
Vu - Vv

-1
= <[V TVl

>= / [VulP 2 VuVo =< —Ayu,v >, (V) v e WHP(Q).
Q

Consequently, the functional & = ®; + &, is Gateaux differentiable on the
space W1P(Q) and

< @) (u),v >=< -Apu+ [ulP "2 u,v >, (V) u,v € WHP(Q).

Using the convexity of the functional ®, by remark 2.1 it follows that
Jou =@ (u) = —Apu + [ulP " u, for all w € WHP(Q). O
Remark 3.1. By the theorem 2.1 we have

-1
I Tpulll = ¢ (lulllip) = [llulllT,"
where ||| - |||« is dual norm of ||| - [||1,p-
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