THE P-LAPLACIAN OPERATOR ON THE SOBOLEV SPACE $W^{1,p}(\Omega)$

JENICĂ CRÎNGANU

Abstract. In this paper p-Laplacian operator is defined on $W^{1,p}(\Omega)$ in connection with the duality mapping of $W^{1,p}(\Omega)$.

1. Introduction and preliminary results

Let Ω be an open bounded subset in \mathbf{R}^N , $\mathbf{N} \geq 2$, with smooth boundary and 1 .

We shall use the standard notations:

$$W^{1,p}(\Omega) = \left\{ u \in L^p(\Omega) : \frac{\partial u}{\partial x_i} \in L^p(\Omega), i = \overline{1,N} \right\},\,$$

equipped with the norm

$$||u||_{1,p}^p = ||u||_{0,p}^p + \sum_{i=1}^N \left\| \frac{\partial u}{\partial x_i} \right\|_{0,p}^p$$

where $\|\cdot\|_{0,p}$ is the usual norm on $L^p(\Omega)$.

It is well known that $\left(W^{1,p}(\Omega),\|\cdot\|_{1,p}\right)$ is separable, reflexive and uniformly convex Banach space (see e.g. [1], theorem 3.5).

If $u \in W^{1,p}(\Omega)$ we can speak about $u|_{\partial\Omega}$ in the sense of the trace: there is a unique linear and continuous operator $\gamma: W^{1,p}(\Omega) \to W^{1-\frac{1}{p},p}(\partial\Omega)$ such that γ is surjective and for $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$ we have $\gamma u = u|_{\partial\Omega}$.

Then the closure of $C_0^{\infty}(\Omega)$ in the space $W^{1,p}(\Omega)$ is

$$W_0^{1,p}(\Omega) = \left\{u \in W^{1,p}(\Omega): u|_{\partial\Omega} = 0\right\} = Ker\gamma.$$

The dual space $(W_0^{1,p}(\Omega))^*$ will be denoted by $W^{-1,p'}(\Omega)$, where $\frac{1}{p} + \frac{1}{p'} = 1$.

Received by the editors: 17.11.2004.

²⁰⁰⁰ Mathematics Subject Classification. 46E50, 35J35

Key words and phrases. p-Laplacian, duality mapping, Sobolev space.

For each $u \in W^{1,p}(\Omega)$ we put

$$\nabla u = \left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, ..., \frac{\partial u}{\partial x_N}\right) \quad , \quad |\nabla u| = \left(\sum_{i=1}^N \left(\frac{\partial u}{\partial x_i}\right)^2\right)^{\frac{1}{2}}$$

and let us remark that

$$|\nabla u| \in L^p(\Omega)$$
 , $|\nabla u|^{p-2} \frac{\partial u}{\partial x_i} \in L^{p'}(\Omega)$, $i = \overline{1, N}$.

By the Poincaré inequality

$$||u||_{0,p} \leq const(\Omega,N) ||\nabla u||_{0,p}$$
, for all $u \in W_0^{1,p}(\Omega)$,

the functional

$$W_0^{1,p}(\Omega) \ni u \to ||u||_{1,p} := ||\nabla u||_{0,p}$$

is a norm on $W_0^{1,p}(\Omega)$, equivalent with $\|\cdot\|_{W^{1,p}(\Omega)}$.

The p-Laplacian operator $\Delta_p u = div\left(|\nabla u|^{p-2}\nabla u\right)$ may be action (see [2] or [6]) from $W_0^{1,p}(\Omega)$ into $W^{-1,p'}(\Omega)$ by

$$<-\Delta_p u, v> = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v$$
, for $u, v \in W_0^{1,p}(\Omega)$.

Now we define the p-Laplacian operator on the space $W^{1,p}(\Omega)$.

We define a new equivalent norm on the space $W^{1,p}(\Omega)$:

$$|||u|||_{1,p}^{p} = ||u||_{0,p}^{p} + ||\nabla u||_{0,p}^{p} = \int_{\Omega} |u|^{p} + \int_{\Omega} \left(\sum_{i=1}^{N} \left(\frac{\partial u}{\partial x_{i}}\right)^{2}\right)^{\frac{p}{2}}.$$

The space $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$ is separable, reflexive and uniformly convex Banach space (see [5]).

The dual norm on $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$ is denoted by $||| \cdot |||_*$.

If $u \in W^{1,p}(\Omega)$ and $\operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) \in L^{p'}(\Omega)$ we can speak about $|\nabla u|^{p-2} \frac{\partial u}{\partial n}|_{\partial \Omega}$ and $|\nabla u|^{p-2} \frac{\partial u}{\partial n}|_{\partial \Omega} \in W^{-\frac{1}{p'},\ p'}(\partial \Omega)$ is defined (see [5] and [8]) by

$$<|\nabla u|^{p-2} \left. \frac{\partial u}{\partial n} \right|_{\partial \Omega}, v|_{\partial \Omega} > = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v + \int_{\Omega} div \left(|\nabla u|^{p-2} \nabla u \right) v,$$

$$(\forall) \ v \in W^{1,p}(\Omega).$$

THE P-LAPLACIAN OPERATOR ON THE SOBOLEV SPACE $W^{1,p}(\Omega)$

If $|\nabla u|^{p-2} \frac{\partial u}{\partial n}|_{\partial\Omega} = 0$ it follows that

$$\int_{\Omega} -div \left(\left| \nabla u \right|^{p-2} \nabla u \right) v = \int_{\Omega} \left| \nabla u \right|^{p-2} \nabla u \nabla v, \ (\forall) \ v \in W^{1,p}(\Omega).$$

Because the integral $\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v$ exists for each $u, v \in W^{1,p}(\Omega)$ we define the operator

$$-\Delta_p: (W^{1,p}(\Omega), ||| \cdot |||_{1,p}) \to (W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$$
 by

$$<-\Delta_p u, v>=\int_{\Omega}\left|\nabla u\right|^{p-2}\nabla u\nabla v$$
, for all $u,v\in W^{1,p}(\Omega)$.

Let us remark that if $u \in W^{1,p}(\Omega)$ then $-\Delta_p u \in (W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$.

Indeed, if $u \in W^{1,p}(\Omega)$ the application $W^{1,p}(\Omega) \ni v \to <-\Delta_p u, v>$ is linear and, since for all $v \in W^{1,p}(\Omega)$:

$$\begin{aligned} |\langle -\Delta_p u, v \rangle| &= \left| \int_{\Omega} |\nabla u|^{p-2} |\nabla u|^{p-2} |\nabla u|^{p-1} |\nabla v| \leq \\ &\leq \left(\int_{\Omega} |\nabla u|^p \right)^{\frac{1}{p'}} \left(\int_{\Omega} |\nabla v|^p \right)^{\frac{1}{p}} \leq |||u|||_{1,p}^{p-1} |||v|||_{1,p}, \end{aligned}$$

it follows that $-\Delta_p u \in (W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$.

2. Basic results concerning the duality mapping

Let $(X, ||\cdot||)$ be a real Banach space and X^* its dual.

For a multivalued operator $A: X \to \mathcal{P}(X^*)$, the range of A is defined by

$$R(A) = \bigcup_{x \in D(A)} Ax,$$

where $D(A) = \{x \in X : Ax \neq \phi\}$ is the domain of A.

The operator A is said to be monotone if

$$< x_1^* - x_2^*, x_1 - x_2 > \ge 0$$
, for all $x_1, x_2 \in D(A)$ and

$$x_1^* \in Ax_1, \ x_2^* \in Ax_2.$$

A continuous function $\varphi : \mathbf{R}_{+} \to \mathbf{R}_{+}$ is called a normalization function if it is strictly increasing, $\varphi(0) = 0$ and $\varphi(r) \to \infty$ with $r \to \infty$.

JENICĂ CRÎNGANU

By duality mapping corresponding to the normalization function φ , we mean the set valued operator $J_{\varphi}: X \to \mathcal{P}(X^*)$ defined by

$$J_{\varphi}x = \{x^* \in X^* : \langle x^*, x \rangle = \varphi(\|x\|) \|x\|, \|x^*\| = \varphi(\|x\|) \},$$

for $x \in X$.

By the Hahn-Banach theorem one has that $D(J_{\varphi}) = X$.

We need of the following result:

Theorem 2.1. If φ is a normalization function, then:

- (i) for each $x \in X$, $J_{\varphi}x$ is a bounded, closed and convex subset of X^* ;
- (ii) J_{φ} is monotone:

$$< x_1^* - x_2^*, x_1 - x_2 > \ge (\varphi(||x_1||) - \varphi(||x_2||))(||x_1|| - ||x_2||) \ge 0$$

for each $x_1, x_2 \in X$ and $x_1^* \in J_{\varphi}x_1, x_2^* \in J_{\varphi}x_2$;

(iii) for each $x \in X$, $J_{\varphi}x = \partial \Phi(x)$, where $\Phi(x) = \int_0^{\|x\|} \varphi(t) dt$ and $\partial \Phi: X \to \mathcal{P}(X^*)$ is the subdifferential of Φ in the sense of convex analysis, i.e.

$$\partial\Phi\left(x\right)=\left\{ x^{*}\in X^{*}:\Phi(y)-\Phi(x)\geq< x^{*},y-x>\right.,\;\left(\forall\right)\,y\in X\right\}.$$

For proof we refer to Browder [3], Lions [7], Cioranescu [4].

Remark 2.1. We recall that a functional $f: X \to \mathbf{R}$ is said to be Gâteaux differentiable at $x \in X$, if there exists $f'(x) \in X^*$ such that

$$\lim_{t\to 0} \frac{f(x+th)-f(x)}{t} = \langle f'(x), h \rangle , \text{ for all } h \in X.$$

If the convex function $f: X \to \mathbf{R}$ is Gâteaux differentiable at $x \in X$ then $\partial f(x) = \{f'(x)\}.$

For example, if $X=(W_0^{1,p}(\Omega),||\cdot||_{1,p}), 1< p<\infty$ and $\varphi(t)=t^{p-1}$, then (see e.g. [6] or [7]) the duality mapping J_{φ} on the space $W_0^{1,p}(\Omega)$ is exactly the p-Laplacian operator $-\Delta_p$,

$$J_{\varphi}: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega),$$

$$J_{\varphi}u = -\Delta_p u$$
, $(\forall) u \in W_0^{1,p}(\Omega)$.

The surjectivity of the duality mapping (see [6]) achieves the existence of the $W_0^{1,p}(\Omega)$ -solution for the equation $-\Delta_p u = f$, with $f \in W^{-1,p'}(\Omega)$.

3. The main result

In the sequel, $W^{1,p}(\Omega)$ will be endowed with the norm $|||\cdot|||_{1,p}$.

Theorem 3.1. The duality mapping on the space $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$, corresponding to the normalization function $\varphi(t) = t^{p-1}$, 1 , is the single-valued map

$$J_{\varphi}: (W^{1,p}(\Omega), ||| \cdot |||_{1,p}) \to (W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*$$

 $J_{\varphi}u = -\Delta_p u + |u|^{p-2} u$, for each $u \in W^{1,p}(\Omega)$,

where $-\Delta_p$ is the p-Laplacian operator on the space $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$.

Proof. By the theorem 2.1. $J_{\varphi}u = \partial \Phi(u)$, $(\forall) \ u \in W^{1,p}(\Omega)$, where $\Phi: (W^{1,p}(\Omega), ||| \cdot |||_{1,p}) \to \mathbf{R}$, $\Phi(u) = \int_0^{|||u||_{1,p}} \varphi(t) dt = \frac{1}{p} |||u||_{1,p}^p = \frac{1}{p} ||u||_{0,p}^p + \frac{1}{p} ||\nabla u||_{0,p}^p$ and $\partial \Phi: (W^{1,p}(\Omega), ||| \cdot |||_{1,p}) \to \mathcal{P}\left((W^{1,p}(\Omega), ||| \cdot |||_{1,p})^*\right)$ is the subdifferential in the sense of convex analysis.

We define the functionals

$$\tilde{\Phi}_{1} : L^{p}(\Omega) \to \mathbf{R}, \quad \tilde{\Phi}_{1}(u) = \frac{1}{p} \|u\|_{0,p}^{p} = \frac{1}{p} \int_{\Omega} |u|^{p}$$

$$\Phi_{2} : W^{1,p}(\Omega) \to \mathbf{R}, \quad \Phi_{2}(u) = \frac{1}{p} \|\nabla u\|_{0,p}^{p} = \frac{1}{p} \int_{\Omega} |\nabla u|^{p}$$

and $\Phi_1: W^{1,p}(\Omega) \to \mathbf{R}, \ \Phi_1 = \tilde{\Phi}_1/W^{1,p}(\Omega)$

The functional $\tilde{\Phi}_1$ is Gâteaux differentiable (see [9]) and

$$<\tilde{\Phi}_{1}^{'}(u), v>=<\left|u\right|^{p-1}sgn\,u, v>, \text{ for all }u,v\in L^{p}\left(\Omega\right).$$

By the imbedding $(W^{1,p}(\Omega), ||| \cdot |||_{1,p}) \to \left(L^p(\Omega), ||\cdot||_{0,p}\right)$ we have that Φ_1 is Gâteaux differentiable on $(W^{1,p}(\Omega), ||| \cdot |||_{1,p})$.

Let the operator $P: W^{1,p}(\Omega) \to L^p(\Omega)$ be defined by $P(u) = |\nabla u|$.

If
$$u \in W^{1,p}(\Omega)$$
, $u = 0$, then $\langle \Phi_{2}'(0), v \rangle = 0$, $(\forall) \ v \in W^{1,p}(\Omega)$.

If $u \neq 0$, a simple computation shows that

$$< P'(u), v > = \frac{\nabla u \cdot \nabla v}{|\nabla u|}, \ (\forall) \ v \in W^{1,p}(\Omega).$$

Since the functional $W^{1,p}(\Omega) \ni v \to < P'(u), v >$ is linear and

$$|\langle P'(u), v \rangle| = \left| \int_{\Omega} \frac{\nabla u \cdot \nabla v}{|\nabla u|} \right| \le \int_{\Omega} |\nabla v| \le (meas \ \Omega)^{\frac{1}{p'}} \left(\int_{\Omega} |\nabla v|^p \right)^{\frac{1}{p}} \le$$

 $\leq c|||v|||_{1,p}$, where $c=(meas\ \Omega)^{\frac{1}{p'}}$, it follows that the operator P is Gâteaux differentiable at u.

Since $\Phi_2=\tilde{\Phi}_1oP$ one has that the functional Φ_2 is Gâteaux differentiable at u and

$$<\Phi_{2}^{'}(u), v> = <\tilde{\Phi}_{1}^{'}(Pu), < P^{'}(u), v> > =$$

$$= <|\nabla u|^{p-1}, \frac{\nabla u \cdot \nabla v}{|\nabla u|}> = \int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla v = <-\Delta_{p} u, v>, (\forall) \quad v \in W^{1,p}(\Omega).$$

Consequently, the functional $\Phi=\Phi_1+\Phi_2$ is Gâteaux differentiable on the space $W^{1,p}(\Omega)$ and

$$<\Phi_{1}'(u), v>=<-\Delta_{p}u+|u|^{p-2}u, v>, (\forall) u, v\in W^{1,p}(\Omega).$$

Using the convexity of the functional Φ , by remark 2.1 it follows that

$$J_{\varphi}u = \Phi'(u) = -\Delta_p u + |u|^{p-2} u$$
, for all $u \in W^{1,p}(\Omega)$. \square

Remark 3.1. By the theorem 2.1 we have

$$|||J_{\varphi}u|||_{*} = \varphi(|||u|||_{1,p}) = |||u|||_{1,p}^{p-1},$$

where $||| \cdot |||_*$ is dual norm of $||| \cdot |||_{1,p}$.

References

- [1] Adams, R. A., Sobolev Spaces, Academic Press, 1975.
- [2] Brezis, H., Analysis Functionelle, Masson, Paris, 1983.
- [3] Browder, F. E., Problemes Non-Lineaires, Les Presses de l'Université de Montreal, 1964.
- [4] Ciorănescu, I., Duality Mappings in Non Linear Functional Analysis, (Romanian), Romanian Academy, Bucharest, 1974.
- [5] Crînganu, J., Variational and Topological Methods for Neumann Problems with p-Laplacian, Communications on Applied Nonlinear Analysis, 11(2004), 1-38.
- [6] Dincă, G., Jebelean, P., Mawhin, J., Variational and topological methods for Dirichlet problems with p-Laplacian, Portugaliae, vol 58, 2001, No 3, 339-378.

THE P-LAPLACIAN OPERATOR ON THE SOBOLEV SPACE $W^{1,p}(\Omega)$

- [7] Lions, J. L., Quelques Méthodes de Résolution des Problemes aux Limites Non Lineaires, Dunod-Gauthier Villars, Paris, 1969.
- [8] Pelissier, M. C., Sur quelques problemes non lineaires en glaciologie, These, Publ. Mat., d'Orsay, 110(1975).
- [9] Vainberg, M. M., Variational Methods for the study of Nonlinear Operators, Holden-Day, Inc., San Francisco, 1964.

Department of Mathematics, University of Galaţi, Romania $E\text{-}mail\ address:}$ jcringanu@ugal.ro