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HÖLDER ESTIMATES OF HIGHER ORDER DERIVATIVES
FOR EVOLUTIONARY MONGE-AMPÉRE EQUATION

ON A RIEMANNIAN MANIFOLD

N. RATINER

Abstract. Let (V, g) be a compact Riemannian manifold. For u ∈ C2(V )

we consider the form gij + ∇iju. If the form is positive definite, it gives

a new metric on V . The Monge-Ampére operator on V is the quotient of

determinants: M(u) = |gij +∇iju|/|gij |. The paper deals with the Cauchy

problem for the evolutionary Monge-Ampére type equation:

−∂u

∂t
+ ln M(u) = f(t, x, u), (t, x) ∈ [0, T ]× V,

u(0, x) = u0(x).

Hölder estimates for higher order derivatives ut and ∇iju of a solution u

are proved.

1. Introduction

The paper deals with the apriory estimates of solutions of the Cauchy prob-

lem for the evolutionary Monge-Ampére type equation on Riemannian manifolds and

continues [1],[2].

Let (V, g) be a smooth compact Riemannian manifold, dim V = m. We

consider the Levi-Civita connection on V , it defines the covariant differentiation on

V . The Levi-Civita connection is the unique symmetric connection with vanishing

torsion tensor, for which the covariant derivative of the metric tensor is zero. Let

x1, . . . , xm be a local coordinate system on V , and ∂1, . . . , ∂m, where ∂k = ∂
∂xk , be
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the corresponding basic vector fields. Suppose u(x) is a function on V at least twice

continuously differentiable. By ∇iu = ∇∂i
u we denote the covariant derivative, and

∇iju = ∇i(∇ju) second order covariant derivative. Let (gij(x)) be the matrix of the

metric g in a local coordinates. We consider the form gu with matrix gij(x)+∇iju(x)

in the local coordinate system. A function u(x) is said to be admissible provided

the form gu is positive definite. An admissible function gives a new metric on V .

By |gij | and |gu
ij | we denote determinants of metrics. The quotient M(u)(x) =

|gu
ij(x)|/|gij(x)| is a positive function on V . We call u → M(u) the Monge-Ampere

type operator by analogy with the classical Monge-Ampére operator. The distinc-

tion between M(u) and the classical operator is the following. The classical operator

is the Hesse matrix of a function u, but M(u) contains sum of the matrix (gij) and

Hesse matrix. The classical operator is defined on the convex set of symmetric positive

definite matrix, for M(u) we shall consider a bundle with convex fibres.

We consider the product [0, T ]×V with the same metric g and connection ∇

for each t ∈ [0, t]. Let u(t, x) be at least twice continuously differentiable function on

[0, T ]×V with respect to spatial variables. The function u(t, x) is said to be admissible

provided the form gu
ij(t) = gij + ∇iju(t, ·) is positive definite for all t ∈ [0, 1]. An

admissible function u(t, x) defines the family of metrics gu(t), t ∈ [0, 1] on V . Applying

M to u(t, x), we obtain the function M(u)(t, x) depending on two variables.

We consider the evolutionary equation

−∂u

∂t
+ lnM(u) = f(t, x, u), (t, x) ∈ [0, T ]× V, (1)

with initial condition:

u(0, x) = u0(x). (2)

The stationary equation with M(u) arises in some geometrical problem. For

example, the condition that describes Einstein-Kähler manifolds is proportionality of

the Ricci tensor and the metric tensor, it was first proposed by Einstein as the equation

of the gravity field in vacuum. The question of existence of Einstein-Káhler metric

leads to the stationary Monge-Ampére type equation. The proof of the famous Calabi

conjecture, which asserts that every form representing the first Chern class is the Ricci
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form of some Kähler metric, proved in 1976 by S.T.Yau and T.Aubin independently,

is based on the existence theorem for stationary Monge-Ampére equation (see [3], [4],

[5],[6] for more details).

Evolutionary equations with classical Monge-Ampére operator on a bounded

domain in the n-dimensional space arise in the problem of deformation of a hyper-

surface with rapid controlled by the mean curvature. Papers of many authors are de-

voted to the last problem, e.g. papers of N.Uraltseva, V.Oliker, N.Ivochkina, K.Tso,

G.Huisken and others.

The aim of the paper is the Hölder constant estimates for the higher order

derivatives for solutions of (1-2). In the proof we use the following estimates obtained

in [1],[2].

Theorem 1. ([1], th.1) Let u(t, x) be an admissible function and belong to

C
(
[0, T ], C2(V )

)
. By D denote the diameter of V . Then we have

max
[0,t]×V

|∇xu| ≤ 2D.

Theorem 2. ([1], th.2) Suppose u(t, x) is an admissible solution of (1)-(2) and be-

longs C
(
[0, T ], C3(V )

) ⋂
C1

(
[0, T ], C2(V )

) ⋂
C2 ([0, T ], C(V )). Let the right hand

side f(t, x, u)of equation (1) be bounded and have bounded first order partial deriva-

tives, fu(t, x, u) ≥ δ > 0 on [0, T ]× V ×R1. Then

|ut(x, t)| ≤ M1,

where M1 depends on the diameter D, metric g, ‖u0‖C1(V ), ‖f‖C1(V ), and δ.

As usual we denote by (gij) elements of matrix g in a local coordinates, (gij)

elements of inverse matrix, also we denote by (gu
ij) elements of matrix gu and (gij

u )

elements of corresponding inverse matrix.

Theorem 3. Let u(t, x) be an admissible solution of (1)-(2) and belong

C
(
[0, T ], C4(V )

) ⋂
C1

(
[0, T ], C2(V )

) ⋂
C2 ([0, T ], C(V )). Suppose the right

hand side f(t, x, u) is bounded and has bounded partial derivatives up to the second

order, fu(t, x, u) ≥ δ > 0 on [0, T ] × V × R1. Then all metrics generated by the

solution u(t, x) of (1)-(2) are uniformly equivalent, i.e. there are positive constants
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c1, c2, depending on the diameter D, metric tensor g, curvature tensor of V , ‖f‖C2(V ),

δ, ‖u0‖C2(V ), and independent on (t, x) such that

c1gijξ
iξj ≤ gu

ijξ
iξj ≤ c2gijξ

iξj ; (3)

1/c2g
ijξiξj ≤ gij

u ξiξj ≤ 1/c1g
ijξiξj . (4)

for all ξ = (ξ1, . . . , ξm) ∈ Rm.

Theorem 4. Let u(t, x) be a solution of (1-2) and belong to C
(
[0, T ], C4(V )

) ⋂
C1

(
[0, T ], C2(V )

) ⋂
C2 ([0, T ], C(V )). Under the assumptions of theorem 3 we have

0 < m−∆u ≤ K,

where K depends on the same values as c1, c2 in theorem 3.

2. Some properties of the operator M(u)

Let us consider the set of all square matrix of order m, we identify it with

Rm2
. Denote by S ∈ Rm2

the subset of symmetric positive definite matrix. S is open

and convex. Write a = (aij) for elements of S.

Let us cover V by finite number of local charts (Ωk, ϕk)q
k=1 and choose open

sets Ω′
k, Ω̄′

k ⊂ Ωk, such that ϕk(Ω′
k) convex in Rm and

q⋃
k=1

Ω′
k = V . Fix an index k,

we shall proceed throughout Ω̄′
k in the local coordinates of chart (Ωk, ϕk).

Fix x ∈ Ω̄′
k, then g(x) ∈ S. Denote by Sx the following subset in Rm2

:

Sx = {a ∈ Rm2
| g(x) + a = (gij(x) + aij) ∈ S}.

We consider the fibre bundle π : S → Ω̄′
k with fibre π−1(x) = Sx and total space

S =
⋃

x∈Ω̄′
k

Sx.

Fibres of the bundle π are open convex subset in Rm2
and every fibre is

homeomorphic to S. The bundle π is trivializable, i.e. there is a homeomorphism

ϕ : S→ Ω̄′
k × S such that the following diagram is commutative:

S
ϕ−→ Ω̄′

k × S

π ↘ ↙ p1

Ω̄′
k

,
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HÖLDER ESTIMATES FOR MONGE-AMPÉRE EQUATION

where p1 : Ω̄′
k × S → Ω̄′

k is the projection on the first factor, p1(x, a) = x.

Indeed, we put ϕ(x, a) = (x, a + g(x)). The map ϕ is one-to-one:

1. if (x1, a1 + g(x1)) = (x2, a2 + g(x2)), then x1 = x2 and a1 + g(x1) =

a2 + g(x1) ⇒ a1 = a2.

2. if (x, b) ∈ Ω̄′
k × S, then ϕ(x, b− g(x)) = (x, b− g(x) + g(x)) = (x, b).

The map ϕ is continuous due to continuity of g, the inverse map ϕ−1(x, b) = (x, b−

g(x)) is also continuous .

Together with π : S→ Ω̄′
k we consider the bundle π̄ : [0, T ]× S→ [0, T ]× Ω̄′

k

whose fibre over (t, x) coincides with the fibre Sx of π over x: π̄−1(t, x) = π−1(x) = Sx.

By S̄ = [0, T ]× S we denote the total space of the bundle π̄.

On the bundle S we consider the following function F : S→ R1:

F (x, a) = ln
|g(x) + a|
|g(x)|

.

We extend F identically to S̄: F (t, x, a) = F (x, a). It is easily seen that the restric-

tion F to a fibre Sx of the bundles S and S̄ is a convex function of m2 variables.

Indeed, ∂F
∂(aij)

= gij
a , where gij

a is an element of the inverse matrix (g(x)+a)−1. Then
∂2F

∂(aij)∂(akl)
= −gik

a glj
a ([1], lemma 1). Thus ∂2F

∂aij∂akl
ξijξkl = −gik

a glj
a ξijξkl is a negative

definite form, i.e. the function F |Sx
is a convex function of m2 variables.

Let Λ: [0, T ]× Ω̄′
k → S̄, Λ(t, x) = (t, x, λ(t, x)), λ(t, x) ∈ Sx, be a continuous

section of the bundle π̄. Assume that there are exist positive constants c1, c2 such

that

c1|ξ|2 ≤ (gij(x) + λij(t, x))ξiξj ≤ c2|ξ|2 (5)

for all (t, x) ∈ [0, T ]× Ω̄′
k.

We consider the superposition

F (x, λ(t, x)) = ln
|g(x) + λ(t, x)|

|g(x)|
.

Denote by

ρ(z1, z2) = |t− τ |1/2 + |x− y| (6)

the parabolic distance between points z1 = (t, x), z2 = (τ, y) ∈ [0, T ]× Ω̄′
k.
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Lemma 1. Suppose the metric g and section Λij are C2+α. Let Mα
Λ be the maximal

Hölder constant for λij. Then

|F (x, λ(z1))− F (y, λ(z2))| ≤ N1ρ
α(z1, z2) + N2|x− y|α,

for all z1 = (t, x), z2 = (τ, y) ∈ [0, T ] × Ω̄′
k with constant N1 depending on

c1,m, ‖g‖C2+α ,Mα
Λ and constant N2 depending on m, ‖g‖C2+α .

Proof.

F (x, λ(t, x))− F (y, λ(τ, y)) = ln |g(x)+λ(t,x)|
|g(x)| − ln |g(y)+λ(τ,y)|

|g(y)| =

= [ln |g(x) + λ(t, x)| − ln |g(y) + λ(τ, y)|] + [ln |g(y)| − ln |g(x)|].
(7)

We start with the first term. For all θ ∈ [0, 1] the form gθ = θ[g(x) + λ(t, x)] + (1 −

θ)[g(y) + λ(τ, y)] is positive definite. Let us consider the function ϕ(θ) = ln |gθ|. We

have

ϕ′(θ) =
1
|gθ|

gij
θ |gθ|

d

dθ
(gθ)ij = gij

θ [gij(x)− gij(y) + λij(t, x)− λij(τ, y)],

where (gθ)ij are elements of matrix gθ, gij
θ are elements of the inverse matrix. Then

ln |g(x) + λ(t, x)| − ln |g(y) + λ(τ, y)| = ϕ(1)− ϕ(0) =
1∫
0

ϕ′(θ) dθ =

=
∑
ij

dij [gij(x)− gij(y) + λij(t, x)− λij(τ, y)],
(8)

where

dij =

1∫
0

gij
θ dθ. (9)

Since matrices g(x) + λ(t, x) satisfy condition (5), then the matrix gθ satisfies (5) as

well, and for elements of the inverse matrix we have

1
c2
|ξ|2 ≤ gij

θ ξiξj ≤
1
c1
|ξ|2.

Integrating the above inequality with respect to θ from 0 to 1 we get

1
c2
|ξ|2 ≤ dijξiξj ≤

1
c1
|ξ|2. (10)
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Then

ln |g(x) + λ(t, x)| − ln |g(y) + λ(τ, y)| ≤

≤
∑
ij

|dij |(|gij(x)− gij(y)|+ |λij(t, x)− λij(τ, y)|) ≤

≤ 1
c1

∑
ij

(Mα
g |x− y|α + Mα

Λρ(z1, z2)α) ≤ m2

c1
(Mα

g + Mα
Λ )ρα(z1, z2),

(11)

where Mα
g is the maximal Hölder constant for gij .

To obtain estimate for the second term we denote for a while g(x) = a,

g(y) = b and consider ln |s| as a function of m2 variables s = (sij) ∈ S.

| ln |a| − ln |b| | ≤
∑
ij

sup
t∈[0,1]

∂ ln |s|
∂sij

(ta + (1− t)b)|bij − aij |.

Since for any matrix s = (sij) we have ∂ ln |s|
∂sij

= sij , then

| ln |a| − ln |b| | ≤
∑
ij

sup
t∈[0,1]

(ta + (1− t)b)ij |bij − aij |.

Put G = {g(x), x ∈ Ω̄′
k} and let co G be its convex hull. Let Mg be the bound for

elements of matrices that are inverse to matrices from co G. Then

| ln |g(x)| − ln |g(y)|| ≤ MgM
α
g m2|x− y|α. (12)

Combining (11) - (12) we obtain the estimate that we need.

We shall use equality (8) ones more to obtain the following:

Lemma 2. Under the assumptions of lemma 1 we have

∑
ij

dij [λij(t, x)− λij(τ, y)] = F (x, λ(t, x))− F (y, λ(τ, y)) + F1(x, y),

where dij are given by (9) and F1(x, y) satisfies Hölder condition

|F1(x, y)| ≤ M̂g|x− y|α

with M̂g = Mα
g (1/c1 + Mg)m2.
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Proof. From (8) and(7) we have:∑
ij

dij [λij(t, x)− λij(τ, y)] =

ln |g(x) + λ(t, x)| − ln |g(y) + λ(τ, y)|+
∑
ij

dij [gij(y)− gij(x)] =

F (x, λ(t, x))− F (y, λ(τ, y)) + [ln |g(x)| − ln |g(y)|] +∑
ij

dij [gij(y)− gij(x)].

(13)

Consider F1(x, y) = [ln |g(x)|− ln |g(y)|]+
∑
ij

dij [gij(y)−gij(x)]. Inequalities (10) and

(12) give

|F1(x, y)| ≤ Mα
g (1/c1 + Mg)m2|x− y|α (14)

3. Hölder Estimate for ut

Theorem 5. Let u(t, x) be a solution of (1-2) from the space C
(
[0, T ], C4(V )

) ⋂
C1

(
[0, T ], C2(V )

) ⋂
C2 ([0, T ], C(V )). Assume that the right hand side f(t, x, u)

bounded and has bounded derivatives up to the second order, fu(t, x, u) ≥ δ > 0

on [0, T ]× V ×R1. Let u0 be an admissible function from C2+α(V ). Then

|ut(z1)− ut(z2)| ≤ Nρβ(z1, z2) (15)

with some power β ∈ (0, α] depending on dimension m and constants c1, c2 from

theorem 3. The constant N depends on β, m, c1 c2, D, g, ‖u0‖C2+α , ‖f‖C2 , and on

δ.

Proof. Fix a number ρ0, 0 < ρ0 < 1/2, we begin with estimate for ut on the cylinder

[ρ0, T ]× V .

Suppose that the manifold V is covered by charts (Ωk, ϕk) whose images coin-

cide with B1(0), where Br(0) is the ball in the Euclidean space Rm of radius r centered

at the origin, and preimages Ω′
k of balls B1/2(0) cover V as well. Differentiating (1)

in t within local coordinates of chart Ωk, we have:

−∂ut

∂t
+ gαβ

u ∇αβut = ft + fuut
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Write v = ut. We have got a linear equation with respect to v:

Lv = ft, (16)

where

L = −∂/∂t + gαβ
u ∇αβ − fu

is a uniformly parabolic operator due to theorem 3.

By Q and Qρ we denote cylinders Q = (0, T )×B1(0), Qρ = (ρ, T )×B1/2(0)

in Rm+1. By ∂′Q denote the parabolic boundary of the cylinder Q: ∂′Q =(
{0} × B̄1(0)

) ⋃ (
(0, T )× ∂B1(0)

)
. Let ρ(z, z′) be the parabolic distance (6) between

points z = (t, x), z′ = (t′, z′), for a point z ∈ Q we write

ρ(z) = inf{ρ(z, z′), z′ = (t′, x′) ∈ ∂Q, t′ < t}, (17)

ρ(z) is said to be the parabolic distance from z to the boundary of Q.

Note that inf{ρ(z), z ∈ Qρ0} = ρ0.

For a solution v = ut of uniformly parabolic equation (16) there is the fol-

lowing Hölder estimate ([7],theorem IV.2.7, p.120): for z1 = (x1, t1), z2 = (x2, t2),

z1, z2 ∈ Qρ0 ,

|ut(z1)− ut(z2)| ≤ N(sup
Q
|ut|+ ‖Lut‖Lm+1(Q))ργ(z1, z2)

with some power γ ∈ (0, 1), depending on m and constants c1, c2 from theorem 3.

The constant N depends on m, c1 c2 as well, and extra on sup |fu| and distance ρ0

from the parabolic boundary.

Using the estimate of |ut| (theorem 2) and the equality Lut = ft, we get

|ut(z1)− ut(z2)| ≤ N1ρ
γ(z1, z2) (18)

with N1 depending on m, c1, c2, δ, ρ0, D, metric tensor g, initial function u0, right

hand side f , and their derivatives up to the second order.

Before getting an estimate of v = ut for small t ∈ (0, ρ0), let us consider the

case t = 0.
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If t = 0, then from equation (1) and initial condition (2) we have

ut(0, x) = lnM(u)(0, x)− f(0, x, u0). (19)

The initial function u0 ∈ C2+α(V ) defines the continuous section Λ0 : Ω̄′
k → S

of the bundle π : S → Ω̄′
k as follows: Λ0(x) = (x,∇iju0(x)). For the section Λ0 we

have constants c1 and c2 in (5) are equal to the minimal and maximal eigenvalues

of matrices (gij(x) +∇iju0(x)) and depend on the initial metric g and second order

derivatives of the initial function.

Application of lemma 1 gives

| lnM(u0)(x)− lnM(u0)(y)| ≤ (N1 + N2)|x− y|α,

where N = N1 + N2 depends on m, ‖g‖C2+α , ‖u0‖C2+α .

On the other hand,

|f(0, x, u0(x))− f(0, y, u0(y))| =∣∣∣∑m
i=1

∂f
∂xi (0, θx + (1− θ)y, θu0(x) + (1− θ)u0(y))(xi − yi)+

fu(0, θx1 + (1− θ)x2, θu0(x1) + (1− θ)u0(x2))(u0(x1)− u0(x2))| ≤

sup
∣∣∣ ∂f
∂xi

∣∣∣ |x− y|+ sup |fu| sup |∂u0
∂xi ||x− y|.

Thus from (19) we have

|ut(0, x)− ut(0, y)| ≤ N0|x− y|α,

where α is the Hölder power of u0 and N0 depends on m, ‖g‖C2+α , ‖u0‖C2+α , and first

order derivatives of f .

To estimate ut on the cylinder (0, ρ0) × V we use another theorem ([7],th.

IV.4.5, p.142). Choose a covering (Ωk, ϕk) of V such that images of Ωk in the space

Rm coincide with balls of radius r = 3
√

2 centered at (3, 0, . . . , 0) ∈ Rm and preimages

Ω′
k of sets {(x1, . . . , xm) : 1/2 < x1 < 2, |xi| < 1, i = 2, · · · ,m} cover V as well. Then

we apply the theorem mentioned above to uniformly parabolic equation (16). It claims

existence of a constant γ̃0 ∈ (0, 1), γ̃0 ≤ α, depending on m, c1 c2 such that for every

γ̃ ∈ (0, γ̃0] we have the following estimate

|u(z1)− u(z2)| ≤ ργ̃(z1, z2)(Mγ̃ + M2 + M1q
−γ̃)N (20)
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with constant N depending on α, m, c1, c2, sup |fu|, where Mγ̃ is the Hölder constant

for ut(0, x) on the lower base t = 0, which corresponds to the power γ̃, M2 is the

bound for the right hand side ft of equation (16), M1 is a constant from theorem 2,

and q = 1/2 due to the choice of charts.

Then inequalities (18) and (20) give the estimate that we need on the hole

cylinder [0, T ]× V with power β = min{γ, γ̃}.

4. Hölder Estimates for ∇iju

Theorem 6. Let u(t, x) be a solution of (1-2) from the space C
(
[0, T ], C4(V )

)⋂
C1

(
[0, T ], C2(V )

) ⋂
C2 ([0, T ], C(V )). Assume that the right hand side

f(t, x, u) is bounded and has bounded derivatives up to the second order, fu(t, x, u) ≥

δ > 0 on [0, T ] × V × R1. Suppose that u0 is an admissible function and belongs to

C2+α(V ). Then

|∇iju(z1)−∇iju(z2)| ≤ Nρβ(z1, z2) (21)

with some power β ∈ (0, α] depending on m and constants c1, c2 from theorem 3. The

constant N depends on β, m, c1 c2, diameter D, metric g, ‖u0‖C2+α , ‖f‖C2 , and δ.

Proof. Suppose that V is covered by local charts in the same way as in the proof of

theorem 5. Let z = (t, x) be a fixed point in (0, T ] × ϕk(Ωk). Let γ be an arbitrary

direction in the model space. Differentiating (1) with respect to γ, we have:

− ∂

∂t
∇γu + gαβ

u ∇γαβu = fγ + fu∇γu.

Differentiating once more, we get

− ∂
∂t∇γγu +∇γ(gαβ

u )∇γαβu + gαβ
u ∇γγαβu =

= ∇γ(fγ) +∇γ(fu)∇γu + fu∇γγu.

Write w = ∇γγu, then

−wt − gαk
u glβ

u ∇γklu∇γαβu + gαβ
u ∇αβw + E

= fγγ + 2fuγ∇γu + fuu(∇γu)2 + fuw,
(22)
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where E = gαβ
u (∇γγαβu − ∇αβγγu). Commutation formulas for forth order covari-

ant derivatives, which contain coefficients of the curvature tensor and second order

covariant derivatives, imply the following estimate ([5], lemma 2):

|E| ≤ [a(m−∆u) + b]gλµ
u gλµ + c, (23)

where a, b, c are positive constants, depending on diameter and curvature tensor of

V . Using the estimate of (m−∆u) (theorem 2) and uniformly equivalence of metrics

gu (theorem 3), we obtain

|E| ≤ 1
c1

(aK + b)gλµgλµ + c =
1
c1

(aK + b)m + c
def
= M.

Let u(t, x) be a solution of (1-2). Denote by L the linear differential operator Lw =

−wt + gαβ
u ∇αβw− fuw. Coefficients gαβ

u at higher order derivatives continuous if the

solution u(t, x) has continuous derivatives with respect to spatial variables up to the

second order. The second term in (22) nonnegative since F is convex. Therefore we

get the following linear differential inequality :

Lw ≥ −E + fγγ + 2fuγ∇γu + fuu(∇γu)2.

Second order derivatives of the right hand side f are bounded, and we have

the estimate |∇γu| ≤ 2D, thus we obtain the inequality

Lw ≥ −K1, (24)

with a constant K1 > 0 depends on diameter and curvature tensor of V , and on

‖f‖C2 .

We are going to use Hölder estimates for solutions of a system of uniformly

parabolic inequalities ([7]), but we need one more inequality. It will be obtained

separately for interior points and for points near the base {0} × V of cylinder. Fix a

number ρ0, 0 < ρ0 < 1/2, and choose cylinders Q and Qρ as in theorem 5.

Each solution u(t, x) of (1) is an admissible function and determine the con-

tinuous solution Λu of the bundle S̄:

Λu(t, x) = (t, x, λu(t, x)) = (t, x,∇iju(t, x)).
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The above section satisfies condition (5) (theorem 3) with c1, c2 depending on diameter

of V , metric g, curvature tensor, ‖f‖C2 , δ, and ‖u0‖C2 . Lemma 2 implies∑
ij

dij [∇iju(t, x)−∇iju(τ, y)] = F (x, λu(t, x))− F (y, λu(τ, y)) + F1(x, y), (25)

where F1(x, y) satisfies Hölder’s condition with power α and Hölder’s constant M̂g =

Mα
g (1/c1 + Mg)m2. In (25) we have

F (x, λu(t, x)) = F (x,∇iju(t, x)) = lnM(u)(t, x), (26)

Let us write equation (1) at points z = (t, x), z′ = (τ, y) ∈ Qρ0 :

−ut(t, x) + lnM(u)(t, x) = f(t, x, u(t, x)),

−ut(τ, y) + lnM(u)(τ, y) = f(τ, y, u(τ, y)).

Subtracting yields:

lnM(u)(t, x)− lnM(u)(τ, y) =

[ut(t, x)− ut(τ, y)] + [f(t, x, u(t, x))− f(τ, y, u(τ, y)].

Then using the Hölder estimate for ut (theorem 5), mean value theorem for f(t, x, u)

regarded as a function of three variables, and estimates from theorems 1, 2, we get

| lnM(u)(t, x)− lnM(u)(τ, y)| ≤ |ut(t, x)− ut(τ, y)|+

|f(t, x, u(t, x))− f(τ, y, u(τ, y)| ≤ Nρβ(z1, z2)+

sup |ft||t− τ |+ sup |∇xf ||x− y|+ sup |fu||u(t, x)− u(τ, y)| ≤

N1ρ
β(z1, z2),

(27)

with β is Hölder’s power for ut; N1 depends on β, m, c1 c2, D, g, ‖u0‖C2+α , ‖f‖C2 ,

and δ.

Therefore from (25), (26), and (27) we have∑
ij

dij(∇iju(t, x)−∇iju(τ, y)) ≤

N1ρ
β(z1, z2) + M̂g|x− y|α ≤ N2ρ

β(z1, z2).
(28)

where N2 depends on the same values as N1 and Hölder’s constant of coefficients of

g.
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Now we use lemma from [7]( p.212, lemma V.5.4)(see also [8], lemma 5.2, for

another wording). It claims that for all positive definite matrices (aij) satisfying the

condition

d1|ξ|2 ≤ aijξiξj ≤ d2|ξ|2, (29)

there exists a natural number n, unit vectors γ1, · · · , γn, and d ∈ (0, 1), depending on

m, d1, d2, such that the following inequality holds

aijuij ≥ d
n∑

i=1

(uγiγi
)+ − 3d2

n∑
i=1

(uγiγi
)−, (30)

where uγi
denotes the derivative in the direction of vector γi and c+ = max{0, c},

c− = max{0,−c}.

The above claim contains partial derivatives, but it is true for covariant

derivatives due to linearity of the covariant derivative with respect to subscript vec-

tor field. Indeed, inequality (30) is based on presentation of a matrix A = (aij)

in the form A =
n∑

i=1

βi(A)γi ⊗ γi, which implies presentation of a linear oper-

ator: Lu = tr(A · D2u) =
n∑

i=1

βi(A)γk
i γl

i∇klu. Here γk
i γl

i∇klu = ∇γiγj u. In-

deed, let γ be a direction, γ = γk∂k, where γk are constant coefficients. Then

∇γu = ∇γ1∂k+···+γm∂m
u =

∑
k

γk∇ku and ∇γγu = ∇γ(
∑
k

γkuk) =
∑
k

γk∇γ(∇ku) =∑
k,l

γkγl∇l(∇ku) =
∑
k,l

γkγl∇lku =
∑
k,l

γkγl∇klu.

Applying (28) to dij∇iju(t, x) and dij∇ij(−u(τ, y)), and note that (−c)+ =

c−, (−c)− = c+ we get:∑
ij

dij(∇iju(t, x)−∇iju(τ, y)) ≥

d
n∑

i=1

((∇γiγiu(t, x)−∇γiγiu(τ, y)))+ − 3
c1

n∑
i=1

((∇γiγiu(t, x)−∇γiγiu(τ, y)))−.

Write wi = ∇γiγi
u. The above inequality together with (28) imply:

N2c1
3 ρβ(z1, z2) ≥

dc1
3

n∑
i=1

(wi(t, x)− wi(τ, y))+ −
n∑

i=1

(wi(t, x)− wi(τ, y))−.
(31)

Therefore, for every point z = (t, x) in the fixed local chart we have uniformly

parabolic inequality (24) and for all z = (t, x), z′ = (τ, y) ∈ Qρ0 inequality (31). Put
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K2 = max{K1, N2c1/3}, then we shall consider the same constant K2 in the right

hand sides of both inequalities (24), (31).

Now we are ready to use theorem [7](. IV.3.1, .122), which gives Hölder

estimates for solutions of system of linear parabolic inequalities. In this theorem we

take fi(r) ≡ r and ν = α = β, where β is the Hólder power for ut (theorem 5).

The theorem mentioned above claims existence of power β0 ∈ (0, 1), depending on

n, d, m, c1, c2, such that for all β′ ≤ min{β0, β} and all z1, z2 ∈ Qρ0 the following

inequality holds

m∑
i=1

|wi(z1)− wi(z2)| ≤ ρ̃−β′
ρβ′

(z1, z2)N(K2ρ̃
β +

m∑
i=1

sup
Q
|wi|), (32)

where ρ̃ = min{ρ(z1), ρ(z2), 1} and ρ(z) is the parabolic distance from z to the bound-

ary Qρ0 (evidently ρ̃ ≥ ρ0). The constant N depends on the same values as β0 and

extra on sup |fu|, β.

Thus substituting ρ0 for ρ̃ in denominator and 1 for ρ̃ in numerator we get

the estimate on [ρ0, T ]× V :

m∑
i=1

|wi(z1)− wi(z2)| ≤ ρ0
−β′

ρβ′
(z1, z2)N1, (33)

with N1 depending on diameter, ‖g‖C0+α , curvature tensor, ‖f‖C2 , δ, ‖u0‖C2+α and

β, where β is the Hölder power for ut.

To obtain the estimate on [0, ρ0) × V we use ([7], theorem IV.5.1, p.147).

Proceeding in the same way as in theorem 5 we cover V with charts (Ωk, ϕk) such

that images of Ωk in the space Rm coincide with balls of radius r = 3
√

2 centered

at (3, 0, . . . , 0) ∈ Rm and preimages Ω′
k of sets {(x1, . . . , xm) : 1/2 < x1 < 2, |xi| <

1, i = 2, · · · ,m} cover V as well. Then the theorem mentioned above claims that

inequalities (24) and (31) imply existence of a constant γ̃0 ∈ (0, 1), depending on

n, m, c1, c2, d, such that for every γ̃ ∈ (0,min{γ̃0, β}] the following inequality holds

n∑
i=1

|wi(z1)− wi(z2)| ≤ ργ̃(z1, z2)(Mγ̃ + K2 + Mq−γ̃)N (34)
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with N depending on n, m, c1, c2, sup |fu|, γ, β, where Mγ̃ is the largest Hólder

constant of ∇γiγi
u0 with power γ̃, M = sup∇γiγi

u, and q = 1/2 due to the choice of

charts.
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