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INTEGRAL )\ — 7 BIVARIATE SPLINE OPERATORS
IN COMPUTER GRAPHICS PROBLEMS

F. CALIO, E. MIGLIO, G. MORONI, AND M. RASELLA

Abstract. In the present work we propose and analyze a particular class
of bivariate tensor VDS splines defined by an integral operator and de-
pending on two shape parameters (A and 7). These functions are used
to generate surface models. Precisely we generate and algebrically for-
malize a A — 7 parametric integral spline family and advocate its use in
the field of computer graphics. We apply such models to the problem of
reconstructing, starting from a set of measured points, “smooth” surfaces
(where the optimal value of the shape parameters is obtained minimizing

suitable functionals).

Introduction

It is well known that variation diminishing splines (VDS), introduced in the
approximation theory during the eighties of the last century, have found many im-
portant applications in the field of integral-differential problems (see for example a
survey in [1]).

In [2] Milovanovic and Kocic present an interesting application of the spline
functional class in the field of computer graphics. Precisely, they propose an integral
operator depending on a real parameter and based on variation dimininishing spline:
the underlying properties of this new class of splines are particularly interesting in the
field of free form curve modelling. We recall that a curve or surface is said to have a
free form if it is possible to alter its shape by changing one or a few parameters with

a priori knowledge of how this changing will affect the shape of the curve or surface.
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Following the idea suggested in [2], in the present paper we propose a particu-
lar class of bivariate tensor splines defined through an integral operator and depending
on two parameters. It is named A — 7 integral VDS spline operator and is applied in
the field of computer graphics, in order to obtain regularly behaving and pleasantly
shaped surfaces, called B-spline integral models, with A — 7 shape parameters.

This paper is organized as follows: first we introduce the problem, going
through the most significant results on univariate splines linked to an integral opera-
tor. In the second section we propose and analyse, as an extension of the univariate
case, the bivariate case of the integral tensor splines operators. The third section is
dedicated to the operator matrix expression which is used for the theoretical anal-
ysis and for the algorithm construction. The parameter optimization procedure is
discussed in section four. An example illustrating the effectiveness of the proposed

algorithm is presented in section five.

1. Generation and properties of univariate integral parametric spline

In this section we recall the basic concepts about VDS splines and the genesis
of univariate integral parametric splines proposed in [2], to acquire the terminology
and the motivations to build and study a new bivariate operator.

Given a set of vector points (control points) Py, P1,..., Py (e.g. in a three-

dimensional space) and a knots vector ¢:
O=t_p=...=tg<t1 < ..<th 1 <tp=...=tymm=1 n=m—k,

the expression

(SuP)t) =S PiBHH) 0<t<1 1)

is called a k-order variation diminishing spline operator (VDS operator) and generates
a curve model called B-spline curve.
The basis function B¥(¢) (i =0,1,...m) are recursively defined as:

ti—1

t—t;
BFt)= — =8 Bl ———
ti —ti gkt

P B (1)
1— 1—

i+1
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Bi(t) = 1 t; <t<tip

BY(t) = 0 otherwise
In matrix form the VDS operator is:
(SwP)(t) = b, ()P 0<t<1 (2)

where:
bm = (B(I]C(t)aB{c(t): ;Bfn(t)): P = (£0:£17"'7£m)T‘

The authors in [2] proposed modifications to this class of splines by introduc-
ing a family of integral spline operators depending on a real parameter. We designate
this new class as Univariate Integral A—Variation Diminishing Splines.

Assuming that t; is the value of the parameter corresponding to the given

control point P, we define:
ticks+1 + ...t

gh= kT (3)

These points in the field of approximation are called Schonberg points [3]. We will
call “correspondence points” such &¥values.

Let x;, (4 = 1,2,3) be the generic component of vector P; and ¢;, (j = 1,2,3)
the piecewise linear function interpolating points ( f,x;) and whose graphic is the
control polygon.

The S,, operator on j-th component of P can then be expressed as:

m

(SmP); = (Sme;) = > _@;(ENBE(H), j=1,2,3
=0

If we substitute ¢, (€%) by the integral mean:

&
fgﬁl @ (u)du
pip;(t) = W (4)
1 1

we obtain the following operator T;,, (integral VDS operator):

(Smlui‘ﬂj) = (Tm‘Pj) = (TmP)j (1 =1,2,3).
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The T, operator can be used to generate a new curve model and in matrix

form it can be written as:
(TuP)(t) = b, ()(MP)  0<t<1 (5)

Equation (5) shows that the integral spline can be regarded as the VDS
operator produced by a new control points set (), transforming in the global way the

given set P. That is: @ = M P. Where matrix M has the following form:

( BO Yo 0 0
(651 51 Y1 0
M = 0 (6] 52 0
0 Ym—1
L 0 ... . Bm Tm |
1\2 Ak = k ¢k
Qp = 0,061' = 2Ak(5i)Ak+l 7i = 17 -1 ! o t
i—15% or — é’k"'l _é'k
) _ 1l —mi=1 m ) i+1 10
Bi = az Vit =1, 5t _ fk —E(H—l
_ (5? . _ K3 1 1 )
Vi - W)Z_la“';m; m_O
2AFA] et < gk < gkl

It follows that
(T P)(t) = (Sm@)(2) 0<t<1

The obtained curve model is characterized by the following properties:

- it is invariant under affine transformations of the coordinate system;

- the whole curve lies inside the convex hull of the control polygon (the
piecewise line whose vertices are the control points);

- it is uniquely determined by its control polygon and no two polygons produce
the same curve;

- it crosses an arbitrary plane no more then does the control polygon ;

- it reproduces points and lines.
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In [2] the authors introduce a shape parameter A in the VDS integral operator.

The integral mean expression in (4) is replaced by:

_ f(ii Pj (u)du

A
i ‘Pj(t) m— G (6)
where:
Go= (1= N+ g
mio= (L= N&+ A
with0<¢t<1 and 0 <A <1.
In matrix form this new operator can be written as:
(TAP)(®) = b, )(MPNP)  0<A<1 (@)
where i
5 w0 0
ar B o 0
MMN=|0 o B .. 0 (8)
0 r)/r);\zfl
L 0 B I
af‘ = Ay 1=0,....m
B = 1—=MNaj+7), i=0,..,m
W= My 1=0,...,m—1

(T P) is called integral spline VDS operator, with shape parameter. It can be shown
that the A parameter allows to control the global shape of the curve (whereas with

the conventional spline only a local control can be achieved).

2. The bivariate spline operator

Now we extend the previously seen concepts of integral \-VDS operator to

the field of splines depending on two parameters (¢ and s).
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This gives rise to a technique for describing surfaces in a three-dimensional
space.

Let us organize our control points into p+ 1 sets of m + 1 elements each, i.e.:
Piji=0,1,...,pand j = 0,1,...,m where P;; is a three-dimensional vector. We
call P the global set of control points.

We express the bivariate tensor VDS as:
p m
(SmpP)(t,8) =D Y " PCH\(t,s) (9)
i=0 j=0
where the basis functions are obtained as a product of two univariate basis splines (of

order k for the ¢ parameter and h for the s parameter, respectively):
G (t,s) = B} (1) B} (s).

It can be easily seen from (9) that the bivariate tensor VDS is built on two
classes of univariate VDS: a first one (control curves) controlled by the vector points
P;; and a second one (swept curves) controlled by points evaluated on first function

class.

3. The matrix expression of the bivariate spline operator

We suggest to express the I-th component of bivariate tensor VDS, in matrix

form, as follows:

pO
(SppP)(ts) i =0"") | .. . @)
. p”
ile.
(Sup(t, )i = b P07 (10)
where:

b = (B(l]u(t)aBiu(t)v 7B:~H(t))

and pfj is the I-th component of vector P;;.
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By exploiting the separability of the tensor product basis functions, it is
possible to extend the formalism introduced in the univariate case to the bivariate
case.

Therefore: the control points for the control spline function are modified by
the same matrix used in the univariate case, then the points on these splines (control
points for swept splines) are modified by another similar matrix.

We get:
(T Phlt.s) = b (M7 (1) M) E (5))" (1)

where M7 (1) is a (m + 1)-order square matrix, depending on the knots of an h-order
B-spline, having the same expression as for univariate splines.
Similarly, M*()) is a (p+ 1)-order square matrix, depending on the knots of

an h-order B-spline.

Theorem 1. Let us consider the nonlinear operator(11). An algebraic and sin-
tetic ezpression of it is the following: (1 —7)(1 — N)(SpT,P)i + 7(1 — A)(Sp7,Q7 )i +
M1 = 7)(SHmQM) 1 + AT(SpmQ27T)1, where: Q7 = MT(1)P, Q* = PM*(1), Q* =
MT(1)PM*(1)

Proof. The proof is based on the following relationship: M (a) = (1 —a)l + aM(1).
Substituing it into (11) we get: b*"((1 — 7)I™ D 4 7 M7(1))B((1 — N)IP+D 4
MM (1)) ("7 (s))T through some algebraic steps the thesis follows. O

4. Parameters optimization

In this section we will deal with the problem of finding optimal values for A
and .

The aim is to obtain the “best” reconstruction of a surface starting from a
cloud of measured points.

The first possibility to find optimal A and 7 parameters is to minimize a
quadratic functional expressing the global (Euclidean) distance of the given data
points from the correspondence points on the reconstructed surface. The functional
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has the following expression:

Fam) =)

=137

Ms

> (PP, (T P)(EF, €M)

0 i=0

This solution gives the most precise representation of a given set of points, but is very
sensitive to digitizing errors.

A second approach consists in minimizing the energy-functional:

T 8 T
F(\7) Z/ (55 (Tor P)(EF, €M) + (TA P)(&k, €l))idrdr
=1},
The D domain corresponds to the whole variation of the ¢t and s parameters, relevant
to the considered surface.

This algorithm gives satisfactory results as far as the surface smoothness is

involved.

5. Test example

The following example higlights the noise sensitivity of the computed surface.
The saddle surface whose equation is z = 22 — y? (hyperbolic paraboloid) has been
used for testing.

The left part Figure 1 shows the “measured” points on the surface; on the
right of the same figure the surface reconstructed using usual splines function is shown.

The left part of Figure 2 represents the surface reconstructed using the min-
imization of the distance-functional while on the right part the reconstructed surface
by means of minimizing the energy functional is shown. The first surface, which
is satisfactory as algorithm test, furthemore still presents some irregularity, on the

contrary the second one looks very smooth.

6. Conclusion

We have proposed a non linear bivariate operator based on an integral para-
metric spline family. By this operator it is possible to obtain a smooth surface, without
modifying each single control point; such surfaces exhibit interesting properties as far
as engineering applications are involved. The next activities we intend to carry out
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FiGURE 1. Left: “Measured” points. Right: Reconstructed surface

using conventional splines functions.

F1GURE 2. Left: Reconstructed surface obtained minimizing the
distance-functional. Right: Reconstructed surface obtained minimiz-

ing the energy-functional.

are: the theoretical investigation of geometrical properties, to acquire a wider record
of application cases and finally to study other functionals to obtain the optimal values

of thye shape parameters.
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