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PERIODIC AND QUASIPERIODIC MOTION
IN THE PERIODICALLY FORCED RAYLEIGH SYSTEM

PETRE BAZAVAN

Abstract. In this paper we present a numerical study of the periodic and
quasiperiodic motion in the dynamical system associated with the gener-
alized Rayleigh equation. Numerical results describe the system dynamics

changes (in particular bifurcations), when the forcing amplitude is varied.

1. Introduction

The autonomous second order nonlinear ordinary differential equation (ODE),

.3
'aé+%—:b+x:0, (1)
introduced in 1883 by Lord Rayleigh, is the nonlinear equation which appears to be
the closest to the ODE of the harmonic oscillator with dumping [1]. Some aspects
concerning canard bifurcations are analyzed in [1] and [2] for the periodically forced
generalization of Rayleigh equation,
A
Ex +§— Z +ax = gsinwt. (2)
From mathematical perspective the nonautonomous system of nonlinear
ODEs associated with (2) is one of a class of periodically forced nonlinear oscilla-
tors, as the Van der Pol and Bonhoeffer Van der Pol systems are.
The behavior of these systems was much numerically investigated in [3], [4]
and [14], due to their applications in electronics and physiology.
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With system (2) there are associated the two-dimensional nonlinear non-

autonomous system of ODEs

1= T2,

3
po— — & 1o, 22 i
To= —_x1 + 22 3 + gsin wt,
and the three-dimensional nonlinear autonomous system

1= T,
3
: 1 . )
Ty= —%wy + (a:z - ?2) + Zsinzs, (4)

T3= wmod2m.

A three-dimensional dynamical system with the phase space R?> x S' can be
associated with (4).

Periodic solutions and the dynamics of the systems associated with (3) and
(4) are studied in [6] and [7]. The succession of the periodic and chaotic attractors
for the system (4) and then, the transition between the periodic and chaotic motion
are numerically studied in [8].

The dynamical system associated with (4) involves the interaction between
two periodic motions, each with a different frequency. When the ratio of the frequen-
cies is irrational the dynamical system behaves in a manner which is neither periodic
or chaotic. This motion is called quasiperiodic. More precisely, the natural periodic
motion, studied in [6] for the unforced case, i.e. Eq. (1), is modulated by a second
periodic motion given by the sinusoidal term when g > 0. The system behaves in a
manner with the motion never quite repeating any previous motion. This behavior
is generically followed by the system locking into a periodic motion, as the control
parameter for the system is varied [14].

The aim of our numerical analysis is to establish the parameter region where
the system (4) presents a quasiperiodic motion and structural changes which may
lead to any subsequent mode locked region of periodic motion.

The mathematical model used in our numerical study is presented in Sec.
2. Numerical results in Sec. 3 are concerned with the proof of the existence of the
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FIGURE 1. Bifurcation diagram for the dynamical system (4).

quasiperiodic motion and the study of the transition from quasiperiodic to periodic

motion in the system (4).

2. The mathematical model

In order to present the mathematical model used in the numerical study from

Sec. 3, we shortly write (4) in the form

= [ (z), (5)

where f is defined on the R? x S! cylinder. We define a Poincaré map as follows. Let

2
Z = {(Il,IQ,.T?,) e R x St ag = Omod—w}

w
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be a surface of section, which is transversally crossed by the orbits of (5). The Poincaré

map P : ¥ — X is defined by

27w
P (20) = 2 (27 /w, 29) = / £ ( (¢, 20)) dt (6)

where 2o € ¥ and z (¢, 20) is the solution of the Cauchy problem z (0) = zq for (5).
We denote by P" the n-times iterated map.
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FIGURE 2. The first Lyapunov exponent for the dynamical system (4).

Let be £ (t, ) a periodic solution of (5) with period T' = n - 27 /w, n > 1,
lying on a closed orbit and consider the map P of the initial point xzq. Then, to this
closed orbit an n-periodic orbit of P corresponds. Numerically, the period T' (i.e. n
from the expression of T') can be determined by integrating Eq. (5) with the initial
condition zg and sampling the orbit points z; = P (xg—1), k > 1 at discrete times
tr, = k- 27 /w, until P* (z) = zo. Then, n = k.

The stability discussion of the periodic orbit £ (¢, zp) is reduced to the stability
discussion of the fixed point zp of P™ since the stability of the periodic solution ¢ is
determined by the eigenvalues of the matrix DP™, [9], [10], [11]. The linear stability
of the n-periodic orbit of P is determined from the linearized-map matrix DP"™ of
P"™. The matrix DP™ can be obtained by integrating the linearized system (5) for a
small perturbation y € R? x S', [9], [10]. We note [9] that one of the eigenvalues of
this matrix always equals 1, and that the remained two eigenvalues, also called the
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Poincaré map multipliers, influence the stability. We denote these eigenvalues by A\;
and 5.

The diagnostics used to establish structural changes of the system (4) in-
volve two-dimensional z; — zo phase plane diagrams, Poincaré sections at intervals
of forcing period 27 /w, bifurcation diagrams with g — zo coordinates, evaluations of
the eigenvalues of the linearized Poincaré map-matrix, evaluations of the Lyapunov
exponents.

All numerical calculations were carried out through the application of a vari-
able step-size algorithm for Runge-Kutta methods [12], [13]. This algorithm is a
variant of an algorithm [14], [15] which controls the time step with a Richardson
extrapolation method [16]. For the calculation of Lyapunov exponents we used the

method described in [17]. The 3D-representation uses a center projection [18].

3. Periodic and quasiperiodic motion

In our numerical study we investigated a region in the four-dimensional pa-
rameter space (¢,a,g,w) given by 0 < e <1,0<a<1l,1<w<3and0< g <2

By logistic reasons we restrict the presentation to the region space
e =0.125, a=0.5, w=2.84, 0<g<0.75. (7

An overview of the numerical results which typify the system is given by the
bifurcation diagram in Fig. 1.

In the first part of the subinterval 0 < g < 0.3 we observe an apparent
regularity of the return points. This region which can indicate a quasiperiodic or
chaotic behavior is followed by a region with clear periodic motion. This last region
is interrupted by short chaotic regions. We prove the existence of the quasiperiodic
behavior in two ways.

The first argument is the first Lyapunov exponent value. Recall that a leading
Lyapunov exponent of zero verifies quasiperiodic behavior [14]. Fig. 2 is a graph of
the control parameter (the forcing amplitude g) against the first Lyapunov exponent
for the same parameter range as the bifurcation diagram of Fig. 1. In the interval
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FIGURE 3. Poincaré sections for the dynamical system (4).

0 < g < 0.3 the exponent was consistently within —0.01 of 0. This is the first
numerical confirmation of the quasiperiodic behavior.

The intersection points of the trajectories of the system (4) with the asso-
ciated Poincaré section represent the second argument. At g; = 0.07 the section is
represented in the Fig. 3a. The drift ring is associated with quasiperiodic motion. In-
tegrating with a large period, the curve does not modify the shape. The fact that the
points are situated on a closed curve and the constant shape related to the integration
time confirm the quasiperiodic behavior [14].

In proportion as g increases in the interval 0 < g < 0.3 the return points
remain on the same curve but the density increases markedly in some locations (Fig.
3b for go = 0.25). At g3 = 0.3 there are only three intersection points in the Poincaré
section (Fig. 3c) and on the bifurcation diagram the quasiperiodic region is replaced
by a periodic window. The motion changes from quasiperiodic to periodic, with the
emergence of a period-3 attractor. This is due to the saddle-node bifurcation of the

Poincaré map P?,

Tpt3 ZPS(JJn), zo € R? xSl, n > 0.
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FIGURE 4. The Poincaré map P? associated with the dynamical sys-

tem (4).

We numerically prove this fact. We use the projection of the graph of P?
on the plane (y,,yn+3), n > 0, where we denote by y the x5 coordinate of the point
z € R x St

In Fig. 4a for g4 = 0.07, when the motion is quasiperiodic, there are two
intersection points of P? with the diagonal y, = y,,3. At the intersection the mag-
nitude of the slope not equals 1. As g increases the curve approaches the diagonal
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in other locations (Fig. 4b for g5 = 0.28). These locations suggest the imminent
tangential intersections. At g = 0.2961 there are three tangential intersections (Fig.
4c) and we have a saddle-node bifurcation of the map P3. When g; = 0.3 (Fig. 4d)
the graph of the map P? is a single point which is situated on the diagonal. This fact

confirms the existence of the period-3 attractor.
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