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AN INTERPOLATION BASED COLLOCATION METHOD
FOR SOLVING THE DIRICHLET PROBLEM

SANDA MICULA

Abstract. In this paper we study the numerical solution of a boundary

integral equation reformulation of the Dirichlet problem. We give a brief

outline of both this problem and its solvability and of a collocation method

based on interpolation. We conclude the paper by giving an error analysis

of this collocation method.

1. The Exterior Dirichlet Problem

We will study only the exterior Dirichlet problem, but would like to mention

that all the results hold for the interior Dirichlet problem, as well, since their integral

equation reformulations are very similar.

Let D denote a bounded open simply-connected region in R3, and let S denote

its boundary. Let D = D ∪ S and denote by De = R3 −D the region complementary

to D. Let De = De ∪ S. At a point P ∈ S, let nP denote the unit normal directed

into D, provided that such a normal exists. Also assume that S is a piecewise smooth

surface that can be decomposed into a finite union of smooth surfaces intersecting each

other along common edges at most. In addition, assume that S has a triangulation

Tn = {∆n,k | 1 ≤ k ≤ n} with mesh size h (such a triangulation can be obtained as

the image of a composition of bijections mk from the unit simplex σ onto a planar

triangle ∆k and bijections Fj from a right triangle onto each smooth piece Sj of S;

for details, see Micula [6, Chapter 2]).
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The Exterior Dirichlet Problem. Find u ∈ C1(De) ∩ C2(De) that satisfies

∆u(P ) = 0, P ∈ De

u(P ) = f(P ), P ∈ S (1)

u(P ) = O(P−1),
∂u(P )

∂r
= O(|P |−2) , as r = |P | → ∞ uniformly in

P

|P |

with f ∈ C(S) a given boundary function.

The boundary value problem (1) has been studied extensively (see Mikhlin

[8], Günter [5], Colton [4]). Here we only give a very brief outlook at results on the

solvability of the problem (1).

The Divergence Theorem (see Atkinson [2, Theorem 7.1.2]) can be used to

obtain a representation formula for harmonic functions.

We seek a solution of (1) in the form of a double layer potential

u(A) =
∫
S

ρ(Q) · ∂

∂nQ

[
1

|A−Q|

]
dSQ, A ∈ De (2)

Using a limiting argument, we obtain the second kind integral equation

2πρ(P )−
∫
S

ρ(Q) · ∂

∂nQ

[
1

|P −Q|

]
dSQ = f(P ), P ∈ S (3)

The kernel function in (3) is given by

∂

∂nQ

[
1

|P −Q|

]
=

nQ · (P −Q)
|P −Q|3

=
cos θQ

|P −Q|2
(4)

where θQ denotes the angle between nQ and (P − Q). Equation (3) can now be

written as

ρ(P )− 1
2π

∫
S

ρ(Q) · cos θQ

|P −Q|2
dSQ = f̂(P ), P ∈ S (5)

where f̂(P ) =
1
2π

f(P ). For simplicity, we will write f(P ) instead of f̂(P ).

Write the equation (5) in operator form:

(I −K)ρ = f (6)

We have (see Mikhlin [8, Chapters 12 and 16]):
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Theorem 1.1. Let S be a C2 surface. Then the equation (6) has a unique

solution ρ ∈ X for each given function f ∈ X, with X = C(S) or X = L2(S).

Theorem 1.2. Let S be a smooth surface with De a region to which the

Divergence Theorem can be applied. Assume the function f ∈ C(S). Then, the

Dirichlet problem (1) has a unique solution u ∈ C∞(De).

2. A Collocation Method

We will use a collocation method where the collocation nodes are the inter-

polation (of order r) nodes, chosen the following way:

qi,j =
(

i + (r − 3i)α
r

,
j + (r − 3j)α

r

)
, i, j ≥ 0, i + j ≤ r (7)

for some 0 < α < 1/3 (these are points interior to the unit simplex, but they get

mapped into points interior to each triangle in Tn). For corresponding Lagrange

functions (see Micula [6, pg. 7-11]), for g ∈ C(S) define an operator Pn by

Png(P ) =
fr∑

j=1

g (mk(qj)) lj(s, t), (s, t) ∈ σ, P = mk(s, t) ∈ ∆k (8)

This interpolates g(P ) over each triangular element ∆k ∈ S, with the inter-

polating function polynomial in the parametrization variables s and t.

Define a collocation method with (7). Denote vk,j = mk(qi). Substitute

ρn(P ) =
fr∑

j=1

ρn (vk,j) lj(s, t)

P = mk(s, t) ∈ ∆k, k = 1, ..., n (9)

into (5). To determine the values {ρn(vk,j)}, force the equation resulting from the

substitution to be true at the collocation nodes {v1, ..., vnfr
}. This leads to the linear

system

ρn(vi) − 1
2π

n∑
k=1

fr∑
j=1

ρn(vk,j)
∫
σ

cos θvk,j

|vi −mk(s, t)|2

· |(Dsmk ×Dtmk)(s, t)| dσ = f(vi), i = 1, ..., nfr (10)
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which we write abstractly as

(I − PnK)ρn = Pnf (11)

which will be compared to (6). We have the following result.

Theorem 2.1. Let S be a C2 surface as described earlier, with Fj ∈ Cr+2.

Then for all sufficiently large n, say n ≥ n0, the operators I − PnK are invertible

on L∞(S) and have uniformly bounded inverses. For the solution ρ of (6) and the

solution ρn of (10)

‖ρ− ρn‖∞ ≤
∥∥(I − PnK)−1

∥∥ · ‖ρ− Pnρ‖∞ , n ≥ n0 (12)

Furthermore, if f ∈ Cr+1(S), then

‖ρ− ρn‖∞ = O(hr+1), n ≥ n0 (13)

For the proof, see, for example, Atkinson [1].

So interpolation of order r, leads to an error of order O(hr+1). But super-

convergent methods can be developed. Next, we want to explore in more detail the

collocation method based on piecewise constant interpolation (the centroid method)

and show that it is superconvergent at the collocation points. Define the operator Pn

by

Png(P ) = g(Pk), P ∈ ∆k, k = 1, ..., n (14)

for g ∈ C(S). Then, Pn is a bounded operator on C(S) with ‖Pn‖ = 1. Define a

collocation method with (14). Substitute

ρn(P ) = ρn(Pk), P = mk(s, t) ∈ ∆k, k = 1, ..., n (15)

into (5). To determine the values {ρn(Pk)}, force the equation resulting from the

substitution to be true at the collocation nodes {Pk | k = 1, ..., n}. This leads to the

linear system

ρn(Pi) +
1
2π

n∑
k=1

ρn(Pk) ·
∫
σ

cos θQk

|Pk −mk(s, t)|2

· |(Dsmk ×Dtmk) (s, t)| dσ = f(Pk), i = 1, ..., n (16)
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which can be rewritten abstractly as

(I + PnK) ρn = Pnf (17)

which will be compared to (6).

By Theorem 2.1., for the true solution ρ of (6) and the solution ρn of the

collocation equation (17), we have

‖ρ− ρn‖∞ = O(h), n ≥ n0 (18)

For g ∈ C(σ), consider the interpolation formula (14), which has degree of precision

0. Integrating it over σ, we obtain∫
σ

g(s, t) dσ ≈
∫
σ

Lτg(s, t) dσ =
1
2
g

(
1
3
,
1
3

)
(19)

which has degree of precision 1.

For τ ⊂ R2, a planar triangle and for a function g ∈ C(τ), the function

Lτg(x, y) = g

(
mτ

(
1
3
,
1
3

))
= g(Pτ ) (20)

is the constant polynomial interpolating g at the node mτ

(
1
3
,
1
3

)
= Pτ (the centroid

of τ). We have the following.

Lemma 2.2. Let τ be a planar right triangle and assume the two sides which

form the right angle have length h. Let g ∈ C2(τ). Let Φ ∈ L1(τ) be differentiable

with the first derivatives DxΦ, DyΦ ∈ L1(τ). Then∣∣∣∣∣∣
∫
τ

Φ(x, y) (I − Lτ ) g(x, y) dτ

∣∣∣∣∣∣ ≤ ch2

∫
τ

(|Φ|+ |DΦ|) dτ

 ·max
τ

{
|Dg|, |D2|g

}
(21)

For the proof, see Micula [6, pg 74-75].

This result can be extended to general triangles, provided

sup
n

[
max

∆n,k∈Tn

r(∆n,k)
]

< ∞ (22)

where

r(τ) =
h(τ)
h∗(τ)

(23)
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with h(τ) and h∗(τ) denoting the diameter of τ and the radius of the circle inscribed

in τ , respectively.

Corollary 2.3. Let τ be a planar triangle of diameter h, let g ∈ C2(τ), and

let Φ ∈ L1(τ) with both first derivatives in L1(τ). Then∣∣∣∣∣∣
∫
τ

Φ(x, y)(I − Lτ )g(x, y)

∣∣∣∣∣∣ ≤ c (r(τ))h2

∫
τ

(|Φ|+ |DΦ|) dτ


· max

τ

{
‖Dg‖∞, ‖D2g‖∞

}
(24)

where c (r(τ)) is some multiple of r(τ) of (23).

Since formula (22) has degree of precision 1 (odd) over σ, extending it to a

square would not improve the degree of precision, which means the same error bound

as in Lemma 2.2 is true for a parallelogram formed by two symmetric triangles.

We want to apply the above results to the individual subintegrals in

Kg(Pi) =
1
2π

n∑
k=1

∫
σ

cos θQk

|Pk −mk(s, t)|2
ρ (mk(s, t))

· |(Dsmk ×Dtmk) (s, t)| dσ (25)

with the role of g played by ρ (mk(s, t)) |(Dsmk ×Dtmk) (s, t)|, and the role of Φ

played by
cos θQk

|Pk −mk(s, t)|2
. For the derivatives of this last function, we have

Theorem 2.4. Let i be an integer and S be a smooth Ci+1 surface. Then

∣∣∣∣Di
Q

(
cos θQ

|P −Q|2

)∣∣∣∣ ≤ c

|P −Q|i+1
, P 6= Q (26)

with c a generic constant independent of P and Q.

For details of the proof, see Micula [6, pg.76].

For the error at the collocation node points, we have the following.

Theorem 2.5. Assume the hypotheses of Theorem 2.1, with each Fj ∈ C2.

Assume ρ ∈ C2. Assume the triangulation Tn of S satisfies (22) and is symmetric. For

those integrals in (25) for which Pi ∈ ∆k, assume that all such integrals are evaluated
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with an error of O(h2). Then

max
1≤i≤n

|ρ(Pi)− ρ̂n(Pi)| ≤ ch2 log h (27)

Proof. We will bound

max
1≤i≤n

|K(I − P )nu(vi)|

For a given node point vi, denote ∆∗ the triangle containing it and denote:

T ∗n = Tn − {∆∗}

By our assumption, the error in evaluating the integral of (25) over ∆∗ will be O(h2).

Partition T ∗n into parallelograms to the maximum extent possible. Denote by

T (1)
n the set of all triangles making up such parallelograms and let T (2)

n contain the

remaining triangles. Then

T ∗n = T (1)
n ∪ T (2)

n .

It is easy to show that the number of triangles in T (1)
n is O(n) = O(h−2), and the

number of triangles in T (2)
n is O(

√
n) = O(h−1).

It can be shown that all but a finite number of the triangles in T (2)
n , bounded

independent of n, will be at a minimum distance from vi. That means that the

triangles in T (2)
n are “far enough” from vi, so that the function G(vi, Q) is uniformly

bounded for Q being in a triangle in T (2)
n (where we denote by G(P,Q) =

cos θQ

|P −Q|2
).

First, consider the contribution to the error coming from the triangles in

T (2)
n . By Lemma 2.2. the error over each such triangle is O

(
h2‖D2g‖∞

)
, since the

area of each triangle is O(h2) and using our earlier observation. Having O(h−1) such

triangles in T (2)
n , the total error coming from triangles in T (2)

n is O
(
h3‖D2g‖∞

)
.

Next, consider the contribution to the error coming from triangles in T (1)
n .

By Lemma 2.2., the error will be of size O(h2) multiplied times the integral over each

such parallelogram of the maximum of the first derivatives of G(vi, Q) with respect

to Q. Combining these we will have a bound

ch2

∫
S−∆∗

(|G|+ |DG|) dSQ (28)
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By Theorem 2.4., the quantity in (28) is bounded by

ch2

∫
S−∆∗

(
1

|P −Q|
+

1
|P −Q|2

)
dSQ (29)

Using a local representation of the surface and then using polar coordinates,

the expression in (29) is of order

ch2 (h + log h)

Thus, the error arising from the triangles in T (1)
n is O(h2 log h). Combining the error

arising from the integrals over ∆∗, T (1)
n , and T (2)

n , we have (27).
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