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SIMPLE SUFFICIENT CONDITIONS FOR UNIVALENCE

VIRGIL PESCAR

Abstract. We study some integral operators and determine conditions for

the univalence of these integral operators.

1. Introduction

Let A be the class of the functions f which are analytic in the unit disc

U = {z ∈ C; |z| < 1} and f(0) = f ′(0) − 1 = 0. We denote by S the class of the

functions f ∈ A which are univalent in U .

2. Preliminary results

We will need the following theorems and lemma.

Theorem 2.1[2]. Let α be a complex number, Re α > 0, and f ∈ A. If

1− |z|2Re α

Reα

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1, (1)

for all z ∈ U , then for any complex number β, Re β ≥ Re α the function

Fβ(z) =
[
β

∫ z

o

uβ−1f ′(u)du

] 1
β

(2)

is in the class S.

Teorem 2.2 [1]. If the function g is regular in U and |g(z)| < 1 in U , then for all

ξ ∈ U and z ∈ U the following inequalities hold:∣∣∣∣∣ g (ξ)− g(z)
1− g(z)g (ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z

1− zξ

∣∣∣∣ , (3)
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|g′(z)| ≤ 1− |g(z)|2

1− |z|2
(4)

The equalities hold only in the case g(z) = ε z+u
1+uz , where |ε| = 1 and |u| < 1.

The Schwarz Lemma [1]. Let the analytic function f(z) be regular in the unit

circle | z | < 1 and let f(0) = 0. If, in |z| < 1, |f(z)| ≤ 1 then

|f(z)| ≤ |z|, |z| < 1 (5)

where equality can hold only if f(z) = Kz and |K| = 1.

3. Main results

Theorem 3.1 Let γ be a complex number, Reγ ≥ 1 and g ∈ A.

If

|g(z)| ≤ 1 (6)

for all z ∈ U, then the function

Gγ(z) =
[
γ

∫ z

0

uγ−1eg(u)du

] 1
γ

(7)

is in the class S.

Proof. Let us consider the function

f(z) =
∫ z

0

eg(u) du. (8)

The function f is regular in U. We have(
1− |z|2

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ =
(
1− |z|2

)
|z| |g′(z)| (9)

From (6) and Theorem 2.2 we obtain

|g′(z)| ≤ 1
1− |z|2

(10)

From (9) and (10) we obtain(
1− |z|2

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (11)

for all z ∈ U . From (8) we obtain f ′(z) = eg(z), then from (11) and Theorem 2.1 for

Re α = 1, it follows that the function Gγ is in the class S.
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Theorem 3.2. Let γ be a complex number, Reγ = a > 0, and the function g ∈ A. If

|zg′(z)| ≤ 1 (12)

for all z ∈ U and

|γ| ≤ (2a + 1)
2a+1
2a

2
, (13)

then the function

Tγ(z) =
[
γ

∫ z

0

uγ−1
(
eg(u)

)γ

du

] 1
γ

(14)

is in the class S.

Proof. Let us consider the function

f(z) =
∫ z

0

[
eg(u)

]γ

du. (15)

The function

h(z) =
1
|γ|

zf ′′(z)
f ′(z)

, (16)

where the constant |γ| satisfies the inequality (13), is regular in U .

From (15) and (16) we obtain

h(z) =
γ

|γ|
zg′(z), (17)

Using (12) and (17) we obtain

|h(z)| < 1 (18)

for all z ∈ U. From (17) we have h(0) = 0 and applying the Schwarz - Lemma we get

|h(z)| ≤ |z| (19)

for all z ∈ U, and hence, we obtain

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ |γ|
a

(
1− |z|2a

)
|z| . (20)

Let us consider the function Q : [0, 1] → R, Q(x) =
(
1− x2a

)
x, x = |z| .

We have

Q(x) ≤ 2a

(2a + 1)
2a+1
2a

(21)
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for all x ∈ [0, 1]. From (21), (20) and (13) we obtain

1− |z|2a

a

∣∣∣∣z f ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (22)

for all z ∈ U. Then, from (22) and Theorem 2.1 for Reα = a it follows that the

function Tγ is in the class S.
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