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ON SOME PROPERTIES OF THE STARLIKE SETS
AND GENERALIZED CONVEX FUNCTIONS.

APPLICATION TO THE MATHEMATICAL PROGRAMMING
WITH DISJUNCTIVE CONSTRAINTS

DOINA IONAC AND STEFAN TIGAN

Abstract. In this paper we give an extension for starlike sets of the well

known property that any convex set in the n-dimensional Euclidian space

is the convex hull of its extremal points. We establish some relationships

between two classes of starlike functions and the convex and quasi-convex

classes of functions. We consider also the concepts of marginal points and

starlike hull of a given set, and we show that a starlike set is the starlike

hull of its marginal point set. For the starlike quasi-convex mathemat-

ical programming with disjunctive constraints, we show the starlikeness

property of its feasible set.

1. Introduction

The main goal of this paper is to give an extension for starlike sets of the well

known property that any convex set in Rn is the convex hull of its extreme points.

We consider also, in section 2, the classes of starlike convex and starlike

quasi-convex functions and we present some relationships between them.

In Section 3, we introduce the concepts of marginal points and starlike hull of

a given set, and we show that a starlike set is the starlike hull of its marginal points.

For the starlike quasi-convex mathematical programming with disjunctive

constraints, in section 4, we prove the starlikeness property of its feasible set.
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2. Preliminaries about starlike sets and functions

We shall present some concepts and preliminaries properties concerning star-

like sets and functions useful in order to obtain the main results in this paper.

Definition 1. A set A ⊆ Rn, A 6= ∅ is called convex, if λx + (1−λ)y ∈ A, ∀x, y ∈ A

and ∀λ ∈ (0, 1).

Let [x, y] = {λx + (1− λ) y ∈ Rn|λ ∈ [0, 1]} be the segment that links the

points x, y ∈ Rn.

The following property holds for any collection of convex sets in Rn (see, e.g.

[12]).

Proposition 1. The intersection of any collection of convex sets in Rn is a convex

set.

Definition 2. Let A ⊆ Rn, A 6= ∅. The convex hull of a set A is the intersection of

all convex sets in Rn containing A and is denoted convA.

Proposition 2. If B ⊆ A ⊆ Rn and A is a convex set, then convB ⊆ A.

Definition 3. Let A ⊆ Rn, A 6= ∅. One point x ∈ A is called extreme point of A, if

there exists no two distinct points x
′
, x

′′ ∈ A and λ ∈ (0, 1) so that x = λx
′
+(1−λ)x

′′
.

Let denote by ext(A) the set of all extreme points of A.

The following fundamental result is known as Minkowski’s Theorem (see, [1],

[2], [11]).

Theorem 3. Any convex and compact set in Rn is the convex hull of its extreme

points.

Definition 4. ([15],[4]) Let A ⊆ Rn, A 6= ∅. The set A is called starlike with respect

to the point x0 ∈ A, if λx0 + (1− λ) y ∈ A, ∀y ∈ A and λ ∈ (0, 1). The point x0 ∈ A

with the above property is said to be starlikeness center of the set A. A set A that

posses at least one starlikeness center is said to be a starlike set.

We mention that a characterization of starlike sets in term of their maximal

convex subsets was given by Bragard [3].

From Definition 4 it results without difficulty the following two properties:
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Theorem 4. If A1, A2, ..., As are starlike sets in Rn, having a common starlike center,

then
⋃s

k=1 Ak is a starlike set.

Theorem 5. If A1, A2, ..., As are starlike sets in Rn, having a common starlike center,

then
⋂s

k=1 Ak is a starlike set.

Definition 5. ([5]) Let A ⊆ Rn, A 6= ∅. The set of all points z ∈ Rn, such that

[z, x] ⊆ A, for any x ∈ A, is called starlikeness kernel of the set A. We denote the

starlikeness kernel of the set A by ker(A).

From Definitions 1, 4, 5 it follows directly:

Proposition 6. (i) The set A ⊆ Rn is a starlike set if and only if ker(A) 6= ∅.

(ii) For any set A ⊆ Rn, ker(A) ⊆ A.

(iii) For any convex set A ⊆ Rn, ker(A) = A.

(iv) The starlikeness kernel of the set A, ker(A) is a convex set.

Definition 6. Let X ⊆ Rn be a convex set. A function f : X → R is called convex

if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ) f(y),

for any x, y ∈ X and any λ ∈ (0, 1). Let cx(X) be the set of all real convex functions

defined on the set X.

As a generalization of the convex functions we consider the class of the starlike

convex functions.

Definition 7. Let X ⊆ Rn be a starlike set. A function f : X → R is called starlike

convex if there exists a point x∗ ∈ X such that

f (λx∗ + (1− λ)y) ≤ λf (x∗) + (1− λ) f(y) (1)

for any y ∈ X and any λ ∈ (0, 1) and

Xr = {x ∈ X|f(x) ≤ r} (2)

is a starlike set or an empty set for any r ∈ R. Let scx(X) be the set of all real

starlike convex functions defined on the set X.
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Definition 8. Let X ⊆ Rn be a convex set. A function f : X → R is called quasi-

convex if

f (λx + (1− λ)y) ≤ max{f (x) , f(y)}

for any x, y ∈ X and any λ ∈ (0, 1). Let qcx(X) be the set of all real quasi-convex

functions defined on the set X.

Theorem 7. ([6, 7]) Let f : X → R, where X ⊆ Rn is a convex and nonempty set.

The function f is quasi-convex if and only if

Xr = {x ∈ X|f(x) ≤ r}

is convex for any r ∈ R.

As a generalization of the quasi-convex function class, we consider the family

of the starlike quasi-convex functions.

Definition 9. Let X ⊆ Rn be a starlike set. A function f : X → R is called starlike

quasi-convex if there exists a point x∗ ∈ X such that

f (λx∗ + (1− λ)y) ≤ max{f (x∗) , f(y)} (3)

for any y ∈ X and any λ ∈ (0, 1) and

Xr = {x ∈ X|f(x) ≤ r}

is a starlike set or an empty set for any r ∈ R. Let sqcx(X) be the set of all real

starlike quasi-convex functions defined on the set X.

In the case of convex functions and more general of quasi-convex functions

(see, Theorem 7) any level set Xr is convex.

Remark 1. Concerning the starlike convex functions we note that the condition (1)

only do not assure that the level sets Xr defined by (2) are all starlike sets.

For instance, the function f : X → R, where

X = {(x1, 0), (0, x2) : x1 ∈ [−1, 1], x2 ∈ [−1, 1]} ⊆ R2

and
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f(x1, x2) =



(x1 − 0.5)2, if x1 ∈ [0, 1], x2 = 0

(x1 + 0.5)2, if x1 ∈ [−1, 0], x2 = 0

(x2 − 0.5)2, if x2 ∈ [0, 1], x1 = 0

(x2 + 0.5)2, if x2 ∈ [−1, 0], x1 = 0

satisfies the condition (1) but it do not verify (2), because the level sets Xr for all

r ∈ [0, 0.25) are not starlike sets. Therefore, the function f below is not a starlike

convex function. But, for instance, the function f1 : X → R, where X is the same as

in the preceding example and

f1(x, x2) =

 x2
1, if x1 ∈ [−1, 1], x2 = 0

2x2, if x2 ∈ [−1, 1], x = 0
,

is a starlike convex function, since it satisfies both condition (1) and (2). The same

remark is also true for starlike quasi-convex functions.

The function f1 is a restriction to X of the convex function f2 : R2 → R,

where f2(x1, x2) = x2
1 + 2x2.

Remark 2. But not any restriction to a starlike set of a convex function is starlike

convex.

For instance, the function f3 : X → R , where X is the same as in the

preceding example and

f3(x1, x2) =

 (x1 − 1)2, if x1 ∈ [−1, 1], x2 = 0

2x2, if x2 ∈ [−1, 1], x1 = 0

is the restriction to X of the convex function f4 : R2 → R, where f4(x1, x2) =

(x1 − 1)2 + 2x2.

But the function f3 is not a starlike convex function, because its level set

X0 = {(1, 0)}
⋃
{(0, x2) : x2 ∈ [−1, 0]}

is not a starlike set.

Remark 3. There exists also a starlike convex function, which is not a restriction of

a convex function.

Let consider the function f5 : X
′ → R, where

X
′
= X

⋃
{(x1, x2) : x1 = x2, x1 ∈ [−1, 1], x2 ∈ [−1, 1]}
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and

f5(x1, x2) =


x2

1, if x1 ∈ [−1, 1], x2 = 0

x2
2, if x2 ∈ [−1, 1], x1 = 0

2(x1 + x2), if x1 = x2 ∈ [−1, 1]

.

The function f5 is a starlike convex function but it is not a restriction to the

set X
′
of a certain convex function, because

f5( 1
2 , 1

2 ) = 2 > 1
2f5(1, 0) + 1

2f5(0, 1) = 1,

while the point ( 1
2 , 1

2 ) = 1
2 (1, 0) + 1

2 (0, 1) is a convex combination of the points (1, 0)

and (0, 1).

Between the families of convex, starlike convex, quasi-convex and starlike

quasi-convex functions there exist the following relationships.

Theorem 8. If X ⊆ Rn is a convex nonempty set, then the following inclusions hold

cx(X) ⊆ scx(X) ⊆ sqcx(X),

cx(X) ⊆ qcx(X) ⊆ sqcx(X).

Proof. Since a convex set is a starlike set, from Definitions 6 and 7 it follows obviously

the inclusion cx(X) ⊆ scx(X). From Definitions 8 and 9, it results obviously the

inclusion qcx(X) ⊆ sqcx(X). The inclusion cx(X) ⊆ qcx(X) is also well known, and

follows immediately from Definitions 6 and 8. It remain to show only the inclusion

scx(X) ⊆ sqcx(X). But this inclusion holds, because the inequality (1) implies (3).

We mention that Tigan [13], [14] was employed the class of starlike quasi-

convex functions in order to prove some stability properties for optimization problem

with respect to constraint perturbations.

Theorem 9. If the infimum of a starlike quasi-convex function f defined on a starlike

set X ⊆ Rn is finite and the minimum point set is non-empty, then the minimum point

set of f is a starlike set.

Proof. Let denote

r = inf {f(x) : x ∈ X}.
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By theorem hypothesis r ∈ R. Then since f is a starlike quasi-convex function

it follows that the level set

Xr = {x ∈ X|f(x) ≤ r}

is a starlike set. But since r is the infimum of the function f the minimum point set

of f is the level set Xr. Therefore, the minimum point set of f is a starlike set.

3. Properties concerning starlike sets

In this section, we will present the concepts of starlike hull and marginal

points of a set which extend the notion of convex hull and extremal points of a set

and we will give a generalization of the theorem 2, implying these concepts.

Definition 10. ([8, 9, 10]) Let A 6= ∅, A ⊆ Rn and x0 ∈ Rn. The intersection of

all starlike sets in Rn with the starlikeness center x0, that includes the set A is called

the starlike hull with the starlikeness center x0 of the set A. This set is denoted by

st(x0, A).

We can easily show that

st
(
x0, A

)
=

⋃
x∈A

[x0, x]. (4)

Definition 11. Let K 6= ∅, K ⊆ Rn and A 6= ∅, A ⊆ Rn. The set

st(K, A) =
⋃

y∈K

st(y, A) (5)

is called the starlike hull of the set A with respect to the starlikeness set K.

From Definition 11, it follows immediately the following theorem.

Theorem 10. Let A 6= ∅, A ⊆ Rn. If K
′

is a nonempty set and K
′ ⊆ K

′′ ⊆ Rn,

then st(K
′
, A) ⊆ st(K

′′
, A).

Theorem 11. If B ⊆ A ⊆ Rn and A is a starlike set having the starlikeness center

x0, then st(x0, B) ⊆ A.
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Proof. Let x ∈ B. Since x ∈ A and the set A is starlike, then [x0, x] ⊆ A. Hence x is

an arbitrary point in B, by (4), follows that st(x0, B) ⊆ A.

Theorem 12. If B ⊆ A ⊆ Rn, A is a starlike set and K is a nonempty set such that

K ⊆ ker(A), then st(K, B) ⊆ A.

Proof. By Theorem 11, st(y, B) ⊆ A for any y ∈ K. Therefore,
⋃

y∈K st(y, B) ⊆ A,

i.e. st(K, B) ⊆ A.

Definition 12. Let A be a subset of Rn and x0 ∈ A. A point x
′ ∈ A is called a

marginal point of A with respect to x0 if there are no x
′′ ∈ A, x

′′ 6= x0 and λ ∈ (0, 1],

so that x
′

= λx0 + (1− λ) x
′′
. We denote the set of all marginal points of A with

respect to x0 by mg
(
x0, A

)
.

Definition 13. Let A be a subset of Rn and K ⊆ A. A point x
′ ∈ A is called a

marginal point of A with respect to K if there are no two distinct points y ∈ K, x
′′ ∈ A

and λ ∈ (0, 1], such that x
′
= λy+(1− λ) x

′′
. We denote the set of all marginal points

of A with respect to K by mg (K, A).

From Definitions 12 and 13, it follows immediately the next property.

Theorem 13. Let A be a subset of Rn, K
′ ⊆ K

′′ ⊆ A and K ⊆ A. Then

(i) mg (K, A) =
⋂

y∈K mg (y, A) ,

(ii) mg (A,A) = ext(A),

(iii) mg
(
K

′′

, A
)
⊆ mg(K

′
, A).

Proof. The assertion (i) obviously results from Definitions 12 and 13. The assertion

(ii) follows from definitions 13 and 3. The point (iii) of the theorem is a direct

consequence of the point (i).

Definition 14. Let A 6= ∅, A ⊆ Rn a starlike set. We define the marginal set of A

as mg(A) = mg(ker(A), A).

The following theorem represents a generalization to the starlike sets of the

Minkowski’s theorem (see, Theorem 2).
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Theorem 14. ([8, 9, 10]) Any starlike and compact set A in Rn, having the star-

likeness centre x0, is the starlike hull of the centre x0 of mg
(
x0, A

)
, i.e. A =

st(x0,mg(x0, A)).

Proof. From Definition 12 it follows that mg
(
x0, A

)
⊆ A. Since A is a starlike set,

by Theorem 11, it results that

st
(
x0,mg

(
x0, A

))
⊆ A (6)

Let x ∈ A. If x ∈ mg(x0, A), then obviously x ∈ st
(
x0,mg

(
x0, A

))
. Let suppose

that x /∈ mg
(
x0, A

)
. As, by hypothesis A is compact, there exists x

′ ∈ mg
(
x0, A

)
,

so that x = λx0 + (1− λ) x
′

for a certain λ ∈ (0, 1]. Hence, in this case, x ∈

st
(
x0,mg

(
x0, A

))
. Therefore, we have

A ⊆ st
(
x0,mg

(
x0, A

))
. (7)

From (6) and (7), it follows that A = st
(
x0,mg

(
x0, A

))
.

Theorem 15. Any starlike and compact set A in Rn is the starlike hull of the mar-

ginal point set mg (A) with respect to ker(A), i.e. A = st(ker(A),mg (A)).

Proof. By theorem 13, it follows that mg (A) =
⋂

y∈ker(A) mg (y, A) . Therefore,

mg (A) ⊆ mg (y, A), for any y ∈ ker(A). Then, by Theorem 12, we have that

st(ker(A),mg(A)) ⊆ st(ker(A),mg(y, A)) for any y ∈ ker(A). But, by Theorem 14

and (5), it results that st(ker(A),mg(y, A)) = A. Therefore, we obtain

st(ker(A),mg(A)) ⊆ A. (8)

Let x ∈ A be an arbitrary element of the set A. If x ∈ ker(A) or x ∈ mg (A) ,

then we evidently have x ∈ st(ker(A),mg(A)). Let suppose that x /∈ ker(A)∪mg(A).

Then, there exists y ∈ ker(A) and x
′ ∈ mg (A) such that x = λy + (1− λ)x

′
for a

certain λ ∈ (0, 1). Therefore, x ∈ st(ker(A),mg(A)), which implies the inclusion

A ⊆ st(ker(A),mg(A)). (9)

Otherwise, in virtue of Definitions 13 and 14, x ∈ mg (A) , which contradicts

the above assumption. But, from (8) and (9) it results the theorem conclusion.
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Theorem 16. If f is a continuous starlike quasi-convex function defined on a starlike

compact set X ⊆ Rn, then f has at least a maximum point in the set ker(A)∪mg(A).

Proof. Since f is a continuous function on a compact set X, f has at least a maximum

point x∗ ∈ X. If x∗ is a marginal point of X then the thorem is true. Suppose that x∗ /∈

mg (A) . Then, there exists y ∈ ker(A) and x
′ ∈ mg (A) such that x∗ = λy+(1− λ) x

′

for a certain λ ∈ (0, 1).

Since f is starlike quasi-convex it follows that

f(x∗) ≤ max{f
(
x

′
)

, f(y)}.

On the other hand, since x∗ is a maximum point of f over the set X, we have

max{f
(
x

′
)

, f(y) ≤ f(x∗),

from where it follows that max{f
(
x

′
)

, f(y)} = f(x∗). Therefore, at least one of the

points x
′
or y is a maximum point, which implies the theorem conclusion.

4. Application to the starlike quasi-convex programming problem with

disjunctive constraints

Let f, gi : Rn → R, i ∈ {2, ...,m} be starlike quasi-convex functions and let

Ω = {b1, b2, ..., bs} ⊆ Rm be a finite set of vectors in Rm.

By g = (g1, g2, ..., gm)T we denote the vector of constraint functions for the

starlike quasi-convex programming problem with disjunctive constraints (QS), and

by b we denote b = inf Ω, where infimum is considered with respect to the usual order

relation in Rn.

QS. Find

min f(x1, x2, ..., xn)

submit to

(g(x1, ..., xn) ≤ b1) ∨ (g(x1, ..., xn) ≤ b2) ∨ ... ∨ (g(x1, ..., xn) ≤ bs) ,

x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0.

Let S be the feasible set for problem QS and Sk and S
′
the sets:
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Sk = {x ∈ Rn
+|g(x) ≤ bk}, k = 1, 2, ..., s

S‘ = {x ∈ Rn
+|g(x) ≤ b}.

Then it results that the following equalities hold

S = ∪s
k=1Sk (10)

S
′
= ∩s

k=1Sk (11)

where Sk, by Theorem 7 and S
′
, by Proposition 1 are both starlike sets, while the set

S is generally not convex.

The set S has a property given by following theorem:

Theorem 17. If the following two condition hold: (i) S
′ 6= ∅,(ii) gi, i ∈ {1, 2, ...,m}

are starlike quasi-convex functions, having all a common starlikeness point,

then the feasible set S of problem QS is a starlike set.

Proof. Choose an arbitrary point x0 ∈ S
′
and let x ∈ S. By (10) it results that there

exists k ∈ {1, 2, ..., s} so that x ∈ Sk. Since Sk is a starlike set and, by (11), x0 ∈ Sk,

we have [x0, x] ⊆ Sk ⊆ S. Therefore, the feasible set S is starlike.

We note that the set S′ represents a starlikeness kernel for the set S, as

resulting from Theorem 17 and Definition 5.
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[2] Borwein J. M., Lewis A. S., Convex Analysis and Nonlinear Optimization. Theory and

Examples, Springer Verlag, New York, 2000.

[3] Bragard L., Propriétés inductive et sous-ensembles maximaux, Bulletin de la Société
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