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A MOVING FINITE DIFFERENCE METHOD
FOR PARTIAL DIFFERENTIAL EQUATIONS
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ANDERSON

Abstract. A moving grid method which has its origin from differential

geometry is studied. The method deforms an intial grid according to a

vector field calculated by a Poisson equation. The forcing term of the

Poisson equation is determined by the time derivative of a positive moni-

tor function. It adapts the grid at each time step by keeping the volume of

each cell proportional to the (normalized) time-dependent monitor func-

tion. A moving finite difference method is formulated which transforms

a time dependent partial differential equation by the grid mapping and

then simulates the transformed equation on a fixed orthogonal grid in the

computational domain. The method is demonstrated by solving model

problems and an incompressible flow problem.

1. Introduction

In numerical simulation of partial differential equations (PDEs), a well-

constructed grid is required to yield satisfactory results. For general grid generation

methods we refer to [2],[4],[5], and [6].

Fixed uniform or non-uniform grids have been widely used. In this approach

the grid points are distributed in the physical domain prior to a simulation of the

PDEs. The same grid point locations are then used throughout the computation.

A drawback in using this technique happens when the solution to the PDE exhibits
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large variation due to, for example, shock waves and boundary layers. Because of its

static feature the grid is unable to effectively capture such variations.

An approach that can lead to improved accuracy and efficiency is the use

of solution-adaptive grids. The idea is to generate the grids according to the salient

features of the solution that is being calculated. The objective is to distribute more

grid points in regions where the solution possess fine scale structures in order to

improve accuracy, and fewer grid points in regions where small changes in the solution

occur to improve efficiency.

There are two basic strategies for grid adaptation: local refinement and relo-

cation of nodes. This paper develops a deformation method which moves the nodes ac-

cording to the numerical solution as it is being computed. A key element of successful

moving grid methods is the construction of a transformation φ : Ω× [0, T ] → Ω which

moves the nodes of an initial grid in accordance with the computed solution through a

monitor function or an error estimator. To qualify as a transformation, φ must be one

to one (injective) and onto (surjective). Variational methods [1], [3] and elliptic PDE

methods [2] have been used to define this transformation.Various aspects of the grid

such as orthogonality (“skewness”), smoothness, and cell size are adjusted through a

linear combination of individual functionals. The resulting system of PDEs for grid

generation are often nonlinear and require intensive computation. Results have also

been reported in controlling the cell size through the Jacobian determinants of the

transformation [7]. A moving finite element method has been developed by Miller

[8] (see [10] for a survey). Recently, methods based on Moving Mesh Partial Differ-

ential Equations [11],[12] were developed with remarkable capability to track rapid

spatial and temporal transitions for multiple dimensional problems. The special issue

of Comput. Methods Appl. Mech. Engerg. edited by Kallinderis [28] contains a

collection of papers on adaptive grid methods for compressible CFD. It is an excellent

source in the topic covered by this study.

A common weakness of current moving grid methods is that they do not

provide mathematical assurance that the “grid transformation φ” is indeed a trans-

formation in three dimensional domains. The method formulated in this paper is
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based on a deformation method by J. Moser and B. Dacorogna [13],[14] in the study

of volume elements. This method was originally developed in the context of Riemann-

ian geometry, and has recently been applied to numerical methodology [15]. It has the

advantage of providing direct control over the cell size of the adaptive grid, and the

transformation can be easily computed. The method inherently defines a transforma-

tion which is necessarily injective, thus ensuring in theory that the grid lines do not

cross even in three dimensions. The approach is remarkably robust, in that it can be

applied to time dependent differential equations in combination with any commonly

used numerical methods (finite element, finite difference, finite volume, etc).

The paper is organized as follows. In Section 2, the mathematical formulation

of the deformation is presented. A 3D numerical grid example is shown in Figure 1.

In Section 3, a moving finite difference algorithm is formulated. The algorithm is

used to solve several model problems. In Section 4, the incompressible Navier-Stokes

equation is solved using this method. Finally in Section 5, we give conclusions and

indicate further research directions.

2. Adaptive Grid Generation by the Deformation Method

2.1. Mathematical Formulation. The deformation method generates a time-

dependent nodal mapping from a domain D1 to another domain D2. It assures

direct volume control through the Jacobian determinant. The way the mapping is

constructed assures the existence and uniqueness of the mesh. The vector field in

which the nodes move is calculated by a scalar Poisson equation. Thus the mesh

lines are quite smooth. Due to the fact that the vector field is irrotational, the cells

maintain acceptable shapes during the calculation. The partial differential equations

are transformed by the moving mesh mapping and solved on a fixed uniform mesh on

a computational domain. For a general description of the method, consider the PDE

for u(~x, t),

ut(~x, t) = L(u) (1)

where u is a scalar or vector variable, L is a differential operator in ~x only, on a

physical domain Ωp in Rd, d = 1, 2, 3, for t > 0. Suppose that the solution to (1) has
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been computed at time step t = tn−1, and a preliminary computation has been done

at time level t = tn. Assume that we are provided with some positive error estimator

(or gradient approximation) δ(~x, t). Define the monitor function

f(~x, t) =
C

δ(~x, t)
(2)

where C is a positive scaling parameter so that at each time step we have∫
Ω

(
1

f(~x, tn)
− 1
)
dA = 0. (3)

Note that f is small in regions of large error and becomes larger in regions where the

error is small. Let Ωc denote the computation domain and Ωp denote the physical

domain. The deformation method constructs a transformation φ : Ωc → Ωp such that

det∇φ(~ξ, t) = f(φ(~ξ, t), t), tn−1 ≤ t ≤ tn, (4)

φ(~ξ, tn−1) = φn−1(~ξ), ~ξ on Ωc,

where ~ξ is a node of an initial grid, φn−1(~ξ) represents the coordinates of the node

at t = tn−1. We require that φ(~ξ) ∈ ∂Ω, for all ~ξ ∈ ∂Ωp. Note that (4) ensures

the size of the transformed cells will conform to the function f , i.e. the grid will be

appropriately “refined” in regions of large error and “coarsened” in regions of small

error.

A steady version of this method has been applied to two-dimensional steady

flow problems [19]. The moving grid method has been applied to one-dimensional

time-dependent problems [17]. The computation of φ consists of two steps:

The first step is to find a vector field ~u(~ξ, t) satisfying

div ~u(~ξ, t) = − ∂

∂t

(
1

f(~ξ, t)

)
, ~ξ ∈ Ωc, tn−1 ≤ t ≤ tn (5)

∂~v

∂n
= 0, ~ξ ∈ ∂Ω, n = outward normal to ∂Ωc.

The vector field ~v can be found by solving for w from the scalar Poisson equation (for

a fixed t)

4w(~ξ, t) = − ∂

∂t

(
1

f(~ξ, t)

)
, ~ξ ∈ Ω (6)
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∂w

∂n
= 0, ~ξ ∈ ∂Ωc,

then setting ~u = ∇w.

The second step is to solve for the new location φ(~ξ, t) at time t of any node

~ξ ∈ Ω of the grid at t = 0 from the ODE system

∂

∂t
φ(~ξ, t) =~(v)(φ(~ξ, t), t), tn−1 ≤ t ≤ tn, ~ξ ∈ Ω, (7)

φ(~ξ, tn−1) = φn−1(~ξ),

where the node velocity ~(v)(~ξ, t) = f(~ξ, t)~u(~ξ, t). The mathematical foundation of

the method is provided by the following

Theorem. [17] det∇φ(~ξ, t) = f(φ(~ξ, t), t) for each ~ξ in D each t > 0.

The Jacobian determinant of a mapping φ(~ξ, t) from D1 to D2 in Rn, n =

1, 2, 3, is

J(φ) = det∇φ =
|dA′|
|dA|

, (8)

where dA′ is the image of a volume (area, in 2D) element dA. In our case, J(φ)

= f(φ,t) > 0 since the monitor function f is chosen to be positive. Thus, the

theorem assures precise control over the cell size relative to that of the fixed initial

grid in both 2D and 3D.

The theorem is proved by showing d
dt (J(φ)g(φ, t)) = 0 and therefore Jg = 1

since Jg
∣∣∣
t=0

= 1. For the convenience of the reader, we include an outline of the

proof given in [17].

Proof. Let g(~ξ, t) = 1

f(~ξ,t)
(⇒ g(φ, t) = 1

f(φ,t) ) and ~u be a vector field satis-

fying

div ~u(~ξ, t) = − ∂

∂t
g(~ξ, t)(⇒ divφ~u(φ, t) = − ∂

∂t
g(φ, t).) (9)

Let η = ~uf (i.e. ~(v)(~ξ, t) = ~u(~ξ, t)f(~ξ, t) ⇒ ~(v)(φ, t) = ~u(φ, t)f(φ, t)). Let J =

J(φ(x, t)) = det∇φ(~ξ, t), be the Jacobian determinant. First,

d

dt
∇~ξφ(~ξ, t) = ∇~ξ(

d

dt
φ(~ξ, t)) = ∇φ(~(v)(φ, t))(∇~ξφ). (10)
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Using the formula: d
dtM(t) = A(t)M(t) ⇒ d

dt (det M(t)) = (Tr A(t))(det M(t)),

we get
dJ

dt
= J(divφ

~(v)(φ, t)) = J(fdivφ ~u(φ, t) +
〈
~u,∇φf

〉
).

by (9),

J−1 dJ

dt
= −f ∂g

∂t
+
〈
~u,∇φf

〉
. (11)

Second,

d

dt
(J(φ)g(φ, t)) = g

dJ

dt
+ J

d

dt
g(φ, t)

= g
dJ

dt
+ J(

〈
∇φg,

dφ

dt

〉
+
∂

∂t
g(φ, t))

= g
dJ

dt
+ J(

〈
∇φg, f(φ, t)~u(φ, t)

〉
+
∂

∂t
g(φ, t)).

Third, by (11) and since fg = 1 implies g∇f + f∇g = 0

1
J

d

dt
(Jg) =

[
−gf ∂g

∂t
+
〈
~u, g∇φf

〉]
+
[〈
f∇φg, ~u

〉
+
∂

∂t
g
]

= 0, (12)

implies that

⇒ d

dt
(Jg) = 0 ⇒ Jg = 1 for each t > 0, since Jg

∣∣∣
t=0

= 1.

Thus

J(φ) = f(φ, t), t > 0.§

Consequently, φ is indeed injective (non-folding). Also by choosing f > 0 to be contin-

uous (or smooth), the Jacobian determinant can be made to change continuously (or

smoothly), which is important in obtaining high accuracy in the computation. The

deformation method does not have direct control of the orthogonality of the grid lines

on the physical domain. The fact that the vector field ~u is irrotational, i.e. ~u = ∇w,

and thus curl ~u = 0, helps to prevent excessive skewness in the grid. In this paper we

transform equation (1) through the grid mapping ~x = ~x(~ξ, t) and solving the trans-

formed equation on an orthogonal grid on the ~ξ-domain. This approach enables us

to have the benefits of the adaptive grids as well as the advantages of using a fixed

orthogonal grid.
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The monitor function f is constructed during the solution process. This

establishes the dynamic coupling of the mesh movement with the PDE solver through

the transformed equation, the Poisson equation, and the deformation ODEs.

Construction of a proper monitor function is a challenging task (see [29]).

A common way to construct the monitor function is the equidistribution principle.

A posteriori error estimates (if available), residues, and truncation errors, etc. are

to be redistributed evenly over the whole domain. In many cases, truncation errors

are difficult to compute. Thus, in engineering calculation, gradient of the solution is

often used to detect the regions where refined grids are needed. For instance, in the

calculation of Euler flows with shock waves [19], we used

f =
C1

1 + C2|∇p|
(13)

where p is the pressure, C2 is a constant for adaptation intensity, C1 is a normalization

parameter. For viscous flows one can use the Mach numberM in place of the pressure.

In general, in addition to the gradient of the unknown variable z, terms involving the

value of z and the second derivatives of (or curvatures) can also be included. For

instance,

f =
k

1 + α|z|+ β|∇z|+ γ |∇2z|
(14)

where α, β, and γ are parameters controlling the intensity of adaptation.

For interface resolution, f can be constructed using a signed distance function

d as follows: Let f be piecewise linear such that

f =

 1 if |d| > ε

0.2 if d = 0
(15)

f is then normalized so that
∫
Ω
( 1

f − 1) = 0, which is required for (4) to be satisfied.

We will discuss the issue in more details below.

In [26] a different version of the deformation method is formulated. It is based

on the level set evolution equation and the transport formula in fluid dynamics (see,

i.e., [30]). It assures the same direct control over the Jacobian determinant.
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2.2. Numerical Examples. We present numerical examples of the deformation im-

plemented using a finite-difference method. In [18], this method was implemented

using a least-squares finite-element method. Two main tasks are required to numeri-

cally implement this method:

1. Solve a Poisson equation on D

wξξ + wηη = − ∂

∂t

( 1
f(ξ, η, t)

)
, (ξ, η) ∈ Ωc (16)

∂w

∂~n
= 0 (ξ, η) ∈ Γ, where ~n is the outward normal,

2. Solve a system of ordinary differential equations (the deformation ODEs)

∂

∂t
φ(ξ, η, t) = f(φ(ξ, η, t), t)~u(φ(ξ, η, t), t) , tk−1 ≤ t ≤ tk, (ξ, η) ∈ Ωc (17)

φ(ξ, η, tk−1) = φk−1(ξ, η).

Let wi,j = w(i∆ξ, j∆η), for i = 1, . . . ,m, j = 1 . . . , n,where ∆ξ = 1
m , ∆η = 1

n . For

simplicity we assume ∆ξ = ∆η = h and m = n.

A monitor, function f , is formed at time t = tk, k ≥ 1. The monitor function

f is normalized to satisfy (3). To accomplish this, let f denote the non-normalized

monitor function and f denote the normalized monitor function at t = tk. Then

f = C · fwhere C =
∫

D

1
f(ξ, η, t)

dA. (18)

Now form − ∂
∂t (

1
f ), the right-hand side of (16), using the normalized monitor

function. The time derivative is approximated on each node in a uniform grid by

gt(ξ, η) = −
( 1

f(ξ,η,tk) −
1

f(ξ,η,tk−1)

τk

)
, τk = tk − tk−1 (19)

The node velocity can then be found by solving (17). In this study (16) is approxi-

mated using central difference approximations for both derivatives to obtain

wi−1,j − 2wi,j + wi+1,j

h2
+
wi,j−1 − 2wi,j + wi,j+1

h2
= (

∂

∂t

1
f

)i,j (20)
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The resulting system of linear algebraic equations is then solved with the successive

over-relaxation (SOR) method implemented in the following two steps

wi,j =
1
4
(wnew

i−1,j + wnew
i,j−1 + wold

i,j+1 + wold
i+1,j − h2 ∂

∂t

1
fi,j

)− w old
i,j (21)

w new
i,j = wold

i,j + λwi,j (22)

On the boundary, Neumann conditions are implemented with a consistent second-

order central-difference scheme. This is done by introducing a “ghost point” outside

of the region and approximating the boundary condition with

1
2h

(wi,1 − wi,−1) = 0 and
1
2h

(wi,n−1 − wi,n+1) = 0 (23)

i = 1, . . . , n− 1, for the lower and upper boundaries respectively, and

1
2h

(w1,j − w−1,j) = 0 and
1
2h

(wn−1,j − wn+1,j) = 0 (24)

j = 1, . . . , n− 1, for the left and right boundaries, respectively.

To initialize the SOR iterations at each time step, the approximations at

the previous time step can be used. Finally, the vector field ~u and hence the nodal

velocities were computed by setting ~u = ∇w using second-order centered differences.

The nodes are then moved by solving the deformation ODEs (17) by a Runge-Kutta

method.

Example 1. A three dimensional uniform grid in a unit cube of R3 is

deformed into a grid concentrated around a pair of spheres and the grid moves appro-

priately as the spheres merge into each other. The definition of the monitor function

is based on the following level set function d:

d = ((x− a1)2 + (y − b1)2 + (z − c1)2 − r2)((x− a2)2 + (y − b2)2 + (z − c2)2 − ρ2)

where (a1, b1, c1) is the (moving) center of the first sphere and (a2, b2, c2) is the moving

center of the second sphere. The zero set of d consists of the two spheres with varying

radii r and ρ. In this example, r = ρ = constant. The spheres initially intersect

each other and gradually merge to one sphere. The deformation method deforms an

11
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initial uniform grid to a grid adapted to a pair of intersecting circles at t = 0 with

the monitor function

1 d ≤ y ≤ d− 0.1

0.3− 7t(y − d) + (1− t) d− 0.1 < y ≤ d

0.3 + 7t(y − d) + (1− t) d < y ≤ d+ 0.1

1 d+ 0.1 < y ≤ 2.0

. (25)

The deformation method then continues to deform the adaptive grid for 1 < t ≤

2 according to the following monitor function

1 0 ≤ y ≤ d− 0.1

0.3− 7t(y − d) d− 0.1 < y ≤ d

0.3 + 7t(y − d) d < y ≤ d+ 0.1

1 d+ 0.1 < y ≤ 2.0

. (26)

In this example, the time step is ∆t = 0.025. The grids are shown in Figure 1.

3. A Moving Grid Finite Difference Method

A concern over various moving grid methods is the lack of orthogonality of

the grid generated. Indeed, while finite element and finite volume methods can be im-

plemented on non-orthogonal grids, finite difference methods usually are implemented

on an orthogonal grid. In this section we describe a common moving grid strategy

([2]) that will be used to implement the deformation method on an orthogonal com-

putational grid.

Let us consider the time dependent equation for a variable z with proper

boundary and initial conditions

zt (~x, t) = L(z), (27)

whereL is a differential operator in ~x, only, on a domain Ωp in Rd, d = 1, 2, 3, for

t > 0. Suppose a positive monitor function f(~x, t) has been constructed according

to the solution that is being calculated. By the deformation method we construct a

transformation φ : xl = φl(~ξ, t), l = 1, 2, 3, from a cubic computational domain Ωc

into Ωp at each t such that J(φ)(~ξ, t) = f(φ(~ξ, t), t). Let n = 3 and let {ξijk | i, j, k =

12
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0, 1, 2, ..., N} be the nodes of a uniform grid on Ωc. Then the image x
ijk

(t) = φ(ξijk, t)

of a node ξijk is the new node of the moving grid at time t. We now transform (27)

to the computational domain Ωc with the coordinates ~ξ = (ξ1, ξ2, ξ3).

Let Z(~ξ, t) = z(φ(~ξ, t), t)). By the Chain Rule, we have,

∂Z

∂t
=

∂z

∂xi

∂φi

∂t
+
∂z

∂t
. (28)

Thus (27), becomes
∂Z

∂t
=

∂z

∂xi

∂φi

∂t
+ L(z). (29)

Note: The components of the node velocity ∂φi/∂t, i = 1, 2, 3 are directly determined

by equation (7). In fact one of the advantages of the deformation method is the

determination of the node velocity ∂φ/∂t by the desired monitor function f through

an explicit formula.

To transform the terms in L(z), we use the formulas in [2]. By the deformation

method (see Theorem, 2.1) that

J(φ) = f(φ, t) > 0.

Thus, the transformation formulas are valid.

To demonstrate the method, let us consider the hyperbolic PDE for d = 2:

∂z

∂t
+ a(x, y, t)

∂z

∂x
+ b(x, y, t)

∂z

∂y
= 0 (30)

on the unit square Ω = [0, 1]× [0, 1]. We begin with a uniform grid on the computa-

tional domain Ωc, with coordinates (ξ1, ξ2) = (ξ, η). We are seeking a transformation

φ : Ωc → Ωp in the form of

x = x(ξ, η, t), y = y(ξ, η, t)

such that the cell size of the moving grid on Ω is evenly distributed according to a

positive monitor function f(ξ, η, t). Let Z(ξ, η, t) = z(x(ξ, η, t), y(ξ, η, t), t). By (28),

(30) becomes

∂Z

∂t
− ∂z

∂x

∂x

∂t
− ∂z

∂y

∂y

∂t
+ a(x, y, t)

∂z

∂x
+ b(x, y, t)

∂z

∂y
= 0. (31)
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Differentiating, we have

Zξ = zx
∂x

∂ξ
+ zy

∂y

∂ξ
, (32)

Zη = zx
∂x

∂η
+ zy

∂y

∂η
. (33)

Since J = det ∇φ = f > 0. By Cramer’s Rule, we can find zx and zy from

(32) and (33) and get

zx =
1
J

(
Zξ

∂y

∂η
− Zη

∂y

∂ξ

)
(34)

zy =
1
J

(
Zη
∂x

∂ξ
− Zξ

∂x

∂η

)
(35)

where J = xξ yη − yξ xη. Let A(ξ, η, t) = a(x((ξ, η, t), y(ξ, η, t), t) and B(ξ, η, t) =

b(x(ξ, η, t), y(ξ, η, t), t). Substituting (34) and (35) into (31) and rearranging terms,

(31) becomes

∂Z

∂t
+AZξ + BZη = 0 (36)

where

A =
1
J

[(
A− ∂x

∂t

)
∂y

∂η
−
(
B − ∂y

∂t

)
∂x

∂η

]
(37)

B =
1
J

[(
B − ∂y

∂t

)
∂x

∂ξ
−
(
A− ∂x

∂t

)
∂y

∂ξ

]
(38)

In general, since the Jacobian determinant J(φ) is positive, the equation is

invariant. That is, the transformed equation remains elliptic, parabolic, or hyperbolic

depending on the type of the original equation 27.

An algorithm implementing the moving finite-difference method will now be

formulated. The algorithm consists of an initialization procedure and a time integra-

tion loop. The initialization procedure is an iteration procedure for determining the

vector field ~v at t = 0. The procedure is needed since the node velocity ~v = (xt, yt)

at t = 0 in the transformed equation can not be determined from the initial value

z0 alone. For the subsequent time steps, either an explicit or implicit scheme can be

used.
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The numerical algorithm in 2D is as follows (extension to 3D is straightfor-

ward):

I. Initialization (t = 0)

1. Construct a uniform grid in the logical domain (ξ, η) in Ωc.

2. Use initial values z0 = z(x, y, 0) to construct the monitor function f

at t = 0.

3. Use the static version of the deformation method to generate an initial

adaptive grid on (x, y) in Ωp determined by the initial monitor function

f(ξ, η, 0) =
C1

1 + C2|∇z0|
.

Set g(s) = C1
1+ s C2|∇z0| and deform the uniform grid on Ωp according

to g(s) in artificial time s from s = 0 to s = 1.

4. Let ~v(0)|t=0 be the vector field ~v|s=1 of the static deformation

method. Derive the transformed equation at t = 0, setting (xt, yt) =

f |t=0 ~v
(0)|t=0.

5. Solve the transformed PDE to obtain U |t= 1
2∆t.

6. Use Z|t=0.5∆t to construct the monitor function f |t=0.5∆t.

7. Use values of the monitor function at t = 0 and t = 0.5∆t to construct

the source term of the Poisson equation at t = 0:

wξξ + wηη = −

(
1

f |t=0.5∆t
− 1

f |t=0

0.5∆t

)
8. Set ~u(1)|t=0 = ∇w at t = 0.

9. Compute the transformed equation again at t = 0, setting ~v(1)|t=0 =

f |t=0 ~u
(1)|t=0.

If ∣∣∣~v(1)|t=0 − ~v(0)
t=0

∣∣∣ < ε,

where ε is a preset tolerance, stop; Otherwise, repeat the above pro-

cedures until ∣∣∣~v(k+1)|t=0 − ~v(k)|t=0

∣∣∣ < ε.
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10. Define the transformed equation at t = 0 by setting

~v = f |t=0 ~u
(k+1)|t=0.

II. Time Integration (t = ∆t, 2∆t, 3∆t, 4∆t, ...)

1. Solve the above PDE and get Z(ξ, η,∆t).

2. Use Z(ξ, η,∆t) to form the monitor function f |t=∆t.

3. Use f |t=∆t and f |t=0 to form the right hand side of the Poisson

equation at t = ∆t:

wξξ + wηη = −

(
1

f |t=dt
− 1

f |t=0

∆t

)

4. Set ~u|t=∆t = ∇w;

5. Compute the transformed equation at t = ∆t, setting (xt, yt) =

f |t=∆t ~u|t=∆t.

6. Repeat the above procedures for t = 2∆t, 3∆t, 4∆t, ....

The moving grid finite-difference scheme is used to solve the following two-

dimensional model equations.

Model Problem I (Weiss Model). Consider the hyperbolic initial-boundary-value

problem

zt = − sin 2πx cos 2πy ux + sin 2πy cos 2πxuy x, y ∈ [0, 1]× [0, 1], t > 0 (39)

z(x, y, 0) = 1− x 0 ≤ x, y ≤ 1, (40) z(0, y, t) = 1, z(1, y, t) = 0, y ∈ [0, 1], t > 0

z(x, 1, t) = z(x, 0, t) = 1− x, x ∈ [0, 1], t > 0.
(41)

Since the equation does not have exact solution, we take the numerical solution on a

fine uniform grid with 200X200 nodes as a satisfactory approximation.

The contour plot of the approximate solution is shown in Figure 2. The

contour plot exhibits boundary layers at x = 0, x = 1, y = 0, and y = 1, as well as

interior layers at x = 0.5. Our task is to generate a moving grid with significantly

less nodes which can resolve these layers.

In Figure 3, we showed the moving grid with 100X100 nodes and in Figure 4

the solution contour plot. The initial grid is uniform. As can be seen by comparison
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to Figure 2, the layers are resolved well except at the two small regions near (0.5, 0)

and (0.5, 1), where boundary and interior layers meet. Clearly, more resolution there

is needed.

To provide the needed resolution, an initial grid that is refined near y = 0

and y = 1 is used. The results are shown in Figure 5 and 6. The contour plot appears

to be comparable to that in Figure 2.

This example shows that

1. Grid resolution is a key factor for calculation involving fine structures, as

we all agree;

2. Construction of a proper monitor function is a challenging task. It is an

active research area (see, i.e., [29]) and some interesting new ideas appear to be very

promising. We will explore some of the ideas in subsequent study.

3. Assuming a proper monitor function is formed by the user, the deformation

method does generate real-time moving grid with specified cell size distribution as the

theory predicts. The term ”real-time” means that the grid is updated in one time

step as the PDE is being solved. The time t in the grid generation equations is the

same as that in the PDE. In particular, ~v is the actual node velocity.

Model Problem II (Whirlpool Problem). Consider the hyperbolic problem

zt = − vr

vrmax

y

r
ux +

vr

vrmax

x

r
uy x, y ∈ [0, 1]× [0, 1], t > 0 (42)

where

r =
√
x2 + y2 + ε vr =

tanh(r)
cosh2(r)

and vrmax
= 0.385. (43)

(44) z(x, y, 0) = − tanh(y
2 ) 0 ≤ x, y ≤ 1,

∂z
∂n = 0

(45)

The moving grid and contour plot of the solution are shown in Figure 7, 8. The

solution exhibits strong rotation. In contrast to the Lagrange method, our grid nodes

do not rotate with the ”flow”. Instead, they move properly to form cells that are

small in the regions where the rotation is strong. The cell shapes remain acceptable
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due to the fact that the vector ~u is irrotational. In the cavity flow example to be

studied below, these characteristics will be seen also.

In the above model problems, the monitor functions are based on the gradient

of the variable z. Prior to solving the equation for t > 0, an initial grid is generated

using the static mode of the deformation method. The initial grid is adapted to the

initial condition by using the following monitor function:

finitial =
C1

1 + sC2|∇z0|
(46)

where s is an artificial time that goes from 0 to 1. Ten time steps in the steady mode

are used to generate the initial grid. The initial could be taken as an uniform grid

as well. If prior information about the solution is known, an adaptive grid could be

generated and used as the initial grid.

To solve the transformed equation, the time discretization is accomplished

by using a second-order Runge-Kutta scheme given by

Z̃n+1
i,j = Zn

i,j + ∆tL(Zn
i,j) (47)

Zn+1
i,j =

1
2
Zn

i,j +
1
2
Z̃n+1

i,j − 1
2
∆tL(Z̃n+1

i,j ) (48)

Here, L is the discrete approximation to the differential operator L. A second-

order essentially non-oscillatory (ENO) method is used to approximate the spatial

derivatives of Z as described in [24]. The transformation parameters xξ, xη, yξ,

yη are discretized using central differencing and the time derivatives xt, yt are inter-

polated from the computational grid. To approximate the boundary conditions the

first-order linear extrapolation scheme given by Zi,0 = 2Zi,1 − Zi,2

Z0,j = 2Z1,j − Z2,j .
(49)

is used. The grids are generated using the monitor function f given by

f(ξi, ηj , t) =
C1

1 + C2|∇z|
, (50)

where ∇z is transformed and calculated at the uniform nodes (ξi, ηj) at each time

t. The constant C2 is the same as in the initial grid stage. The forcing term of the
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Poisson equation is approximated using the difference scheme

∂

∂t

( 1
f

)n

i,j
=

3( 1
f )n

i,j − 4( 1
f )n−1

i,j + ( 1
f )n−2

i,j

2∆t
. (51)

4. Navier-Stokes Equation

For an incompressible flow, the governing equations can be written in con-

servative form as

∂ui

∂t
+

1
J

∂

∂ξj
[J (Uj − Vj)ui] = − 1

J

∂

∂ξj

(
J
∂ξj
∂xi

p

)
+

1
J

1
Re

∂

∂ξj

(
Jqjk

∂ui

∂ξk

)
, (52)

∂ξk
∂xi

∂

∂ξk

[
1
J

∂

∂ξj

(
J
∂ξj
∂xi

p

)]
= − 1

J

∂D

∂t
+

1
J

∂

∂ξk

∂ξk
∂xi

∂

∂ξj
[J (Uj − Vj)ui] . (53)

where in the pressure Poisson equation (PPE) (53), the viscous terms have been

removed by using the continuity equation. Ui is the contravariant velocity and Vi is

determined by the node velocity ~xt of the moving grid:

Ui =
∂ξi
∂xj

uj , Vi =
∂ξi
∂t

=
∂ξi
∂t

=
∂xj

∂t

∂ξi
∂xj

. (54)

The Jacobian and metrics are defined as

J =
∂(x1, x2, x3)
∂(ξ1, ξ2, ξ3)

, qjk =
∂ξj
∂xi

∂ξk
∂xi

. (55)

The deformation method uses a scalar Poisson to get the node velocity vector

field and then move the nodes by ODEs. This is in contrast to the elliptic grid

generators, which determines node position directly. The flow in a square cavity

whose top wall is driven by a lid with uniform velocity has served as a model problem

for testing and evaluating numerical techniques. This is a typical complex flow in a

simple geometry with a strong vortex near the center and two secondary vortexes.

Our task is to generate a moving grid which resolves the vortexes as the computation

proceeds. The construction of a suitable monitor function is an important aspect of

adaptive algorithms.In this paper, instead of searching for the best possible monitor

function, we use a simple and effective monitor function based on the stream function

ψ to demonstrate the method. More precisely, in order to resolve the main as well as

the secondary vortexes, we use the product of ψ and ψ−ψmin. Also, instead of using

the best flow solver, we used a reliable flow solver written by the second author. The
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present study compares results on moving grids to the benchmark solutions found in

[25].

The marker-and-cell (MAC) method is used with collocate grid arrangement

in this study. The convective terms are discretized using the QUICK scheme to remove

numerical wiggles, while the viscous terms are discretized by central difference scheme.

The second-order Adams-Bashforth method is used for time integration to solve the

momentum equation (52). Both the pressure Poisson equation (PPE) (53) and the

deformation Poisson equation (6) are discretized by central differences and then solved

with the ADI method. An explicit 2nd-order Runge-Kutta method is used in solving

equation (7). The usual technique: geometric conservation law (GCL) for correcting

the errors caused by moving grids is not used in this study. Our experience is that

the correction is unnecessary for the viscous flow with low Reynolds number as is

the case of the cavity flow. It was necessary for inviscid flows or viscous flows with

high Reynolds number. For instance, it was used in [27] for the cylindrical implosion

problem.

The monitor function in this study is based on d = ψ(ψmin − ψ). An initial

adapted grid is generated at the artificial time s = 1 according to the monitor function

finit = (1− s) + sf where f is given by

f =


1 if |d| > 0.004

0.344− 164d if -0.004 ≤ d ≤ 0

0.344 + 164d if 0 ≤ d ≤ 0.004

. (56)

After the initial time, a moving grid is formed using the same f . The moving

grid and the stream function contour at the steady state are shown in Figure 9 and

10. The comparisons on stream function and vorticity are given in Table 1. The

values presented are nodal values.
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Table 1. Comparison to Benchmark Solution, Re = 1000

Uniform Grid (129 × 129) Moving Grid (51 × 51)

Primary Vortex Benchmark [25] Moving Grid MAC

ψmin -0.117929 -0.117967

ωv.c 2.04968 2.19837

Location (x, y) (0.5313, 0.5625) (0.5228, 0.5589)

5. Conclusion

We have formulated a moving grid finite difference approach for time de-

pendent PDEs. We have also established rigorously that the method does not lead

to tangled grids in three dimensions. Computational experiments indicate that the

moving grid method is robust and efficient, and that it can put more nodes in the

regions where the need for higher resolution exists. The method is not as fast as on

fixed grid (with the same amount of nodes) due to the fact that it requires solving

a scalar Poisson equation on a uniform grid at each time step. The method is more

efficient when compared to other PDE based grid generators that solve non-linear

PDE systems.

A moving finite difference algorithm is presented, which transforms the host

partial differential equations via the grid mapping. The transformed equations then

are simulated on an orthogonal computational grid. The method is demonstrated by

model problems and the Navier-Stokes problem. The calculations showed that the

method is capable of significantly enhance resolution where and when it is needed. On

the other hand, an additional Poisson equation is solved at each time step, and smaller

timestep may be necessary on fine grids. Thus, the method is expected to be used

only for solving large, complex PDE systems for which the extra efforts for solving the

additional Poisson equation is insignificant and some local resolution enhancement is

necessary.
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Works are underway to develop methods for adaptive multiple block grids

and unstructured meshes for unsteady partial differential equations in 2D and 3D

general domains.
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Figure 1.1. (Clockwise from top-left) Grid plots for Example 1 for t = 1.0. Cutaway

plot, grid slice at x = 0.5, grid slice at z = 0.5, grid slice at y = 0.5.
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Figure 1.2. (Clockwise from top-left) Grid plots for example 1 for t = 5.5. Cutaway

plot, grid slice at x = 0.5, grid slice at y = 0.5, grid slice at z = 0.5.
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Figure 2. Weiss Model: Contour Plot. Fixed uniform grid. 200X200.
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Figure 3. Weiss Model: Moving grid with uniform initial grid 100X100.
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Figure 4. Weiss Model: Contour Plot. Moving grid with uniform initial grid.

100X100.
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Figure 5. Weiss Model: Moving grid with adapted initial grid. 100X100.
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Figure 6. Weiss Model: Contour Plot. Moving grid with adapted initial grid.

100X100.
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Figure 7. Wrpool Model: Moving grid with uniform initial grid. 100X100.
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Figure 8. Wrpool Model: Contour Plot. Moving grid with uniform initial grid.

100X100.
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Figure 9. Steady Cavity Flow: Moving grid at steady state. 50X50.
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Figure 10. Steady Cavity Flow: Contour Plot. Moving grid. 50X50.
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