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THE PROBLEM OF B. V. GNEDENKO FOR PARTIAL SUMMATION
SCHEMES ON BANACH SPACE

HO DANG PHUC

Abstract. The paper deals with the problem of B. V. Gnedenko for the

partial summation scheme of random vectors taking values in a Banach

space. A characterization of the limit distribution class of the scheme and

some conditions for the limit distribution to be convolutions of semistable

distributions are given.

1. Introduction and notation

Let X1, X2, ... be a sequence of independent random variables and

Yn = an

n∑
i=1

Xi + xn , n = 1, 2, ... (1.1)

a sequence of normalized sums, which has a proper limit distribution Q for an appro-

priate choice of normalizing sequence of positive numbers (an) tending to 0 and of

elements (xn) from the real line. B. V. Gnedenko posed the problem of characterizing

the class of the distributions {Q} when among the distributions of the summands Xi

there are only p different ones. Let this class be denoted by Gp. It is well known that

G1 coincides with the class of stable distributions. In [11] Zolotarev and Korolyuk

proved that G2 is the class of convolutions of stable distributions pairs. (This theorem

is generalized to Banach valued random vectors by Jurek [5]). Further, Zinger shows

that in the case of p > 2 , the class Gp is broader than the one of stable distribution

convolutions [9] and characterized it in [10].
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An extension of the stable distributions class is the one of semistable distri-

butions, i. e. the limit distributions {Q} when in (1.1) the index n run not over whole

the sequence of natural numbers, but only along some subsequence (k(n)) :

Yn = an

k(n)∑
i=1

Xi + xn , n = 1, 2, ... ,

Xi, i = 1, 2, ..., are independent identically distributed and k(n) tends to infinity not

too fast:

k(n)/k(n + 1) → r , 0 < r < 1 . (1.2)

Under this idea, Chibisova [1,2] generalized the Gnedenko’s problem to the

partial summation scheme:

Yn = an

k(1,n)∑
i=1

X1,i + ... +
k(p,n)∑
i=1

Xp,i

 + xn , n = 1, 2, ... , (1.1′)

where Xj,i , i = 1, 2, ..., k(i, j); j = 1, .., p , are independent, Xj,i , i = 1, 2, ..., k(i, j),

have a common distribution µj for j = 1, ..., p , and

1 > k(j, n)/k(j, n + 1) ≥ c , j = 1, ..., p (1.2′)

for some c > 0. The reason for taking (1.2′) instead of (1.2) to restrict the scheme

(1.1′) is that for the case when p > 1 , if the condition (1.2′) fails, the limit distribution

of the scheme (1.1′) would be an arbitrary infinitely divisible distribution without

normal component, although (1.2) holds for k(n) = k(1, n) + ... + k(p, n) (see

Theorem 1 [1]).

In this paper, we attempt to study the problem of B. V. Gnedenko for the

partial summation scheme of random vectors taking values in a Banach space. A

characterization of the limit distributions class of the scheme (Theorem 1) and some

conditions for the limit distribution to be convolutions of semistable distributions

(Theorems 2, 3 and 4) are given.

In the sequel the following notation will be used: E denotes a separable

Banach space, E
′
its dual space, < ., . > the dual pairing between E and E

′
. Further,

P (E) stands for the class of all probability measures on E , δ(x) the unit mass
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concentrated at the point x ∈ E, ∗ the convolution and ⇒ the weak convergence of

measures in P (E). It is well known that P (E) with the weak convergence topology

is a separable metric space (see [6], Theorem II.6.2). Moreover, one can find in this

space a shift-invariant metric (e. g. the Levy-Prokhorov metric), i. e. a metric ρ

such that

ρ(ν ∗ δ(x)), µ ∗ δ(x)) = ρ(ν, µ)

for all x ∈ E, µ, ν ∈ P (E).

Throughout the forthcoming, unless otherwise specified, we shall denote by

small italic letters x, y, z elements from E; a, b, c, r, s, t positive numbers, (n) the se-

quence of all natural numbers and by Greek letters γ, κ, λ, µ, ν measures from P (E).

Moreover, (xn), (yn), (zn) , also with other subscripts or indexes, will mean sequences

of elements from E. Similarly, (an), (bn), (cn), (r(n)), (s(n)), (t(n)) mean sequences of

positive numbers, (γn), (κn), (λn), (µn), (νn) sequences of measures from P (E) and

(k(n)), (m(n)), (n′), (n′′) subsequences of natural numbers.

A measure µ is called nondegenerated if it is not concentrated at any point

and the power µ∗n is defined recursively by µ∗n = µ∗n−1 ∗ µ. Further µ is said to be

infinitely divisible if for every n there exists a measure µn such that µ = (µn)∗n. By

ID(E) we mean the subclass of all infinitely divisible measures from P (E). Then for

each t ≥ 0 and µ ∈ ID(E) we can define µt (see [8], for example).

For a measurable map S from E to another Banach space, Sµ stands for the

image of µ by the map S. In particular, when S is of the form a.I , where I is the

unit operator in E , we write straightly a.µ instead of a.Iµ. We say that µ belongs to

the domain of semi-attraction, or more exactly r−semi-attraction, of λ if there exist

(an), (k(n)) and (xn) such that

an.µ∗k(n) ∗ δ (xn) ⇒ λ

and

k(n)/k(n + 1) → r as n → 0 .
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It is evident that in this case λ is a semistable measure (see [3], for example),

i. e. λ ∈ ID(E) and λr = a.λ ∗ δ(x) for some a and x.

A sequence (λn) is said to be shift-convergent if there exists a sequence (xn)

such that the sequence (λn ∗ δ(xn)) weakly converges and to be compact if every its

subsequence contains a convergent subsequence.

2. Main results

Theorem 1. Let c > 0 , λ be non-degenerated and p be a natural number. If there

exist sequences (k(1, n)), ..., (k(p, n)), (an), (xn) and measures µ1, ..., µp such that

an.
(
µ
∗k(1,n)
1 ∗ ... ∗ µ∗k(p,n)

p

)
∗ δ (xn) ⇒ λ (2.1)

and (1.2′) holds, then there exist sequences (t(1, n)), ..., (t(p, n)), (cn), (yn), an element

y0 and measures λ1, ..., λp ∈ ID(E) such that t(i, n) ≥ 1/c, n = 1, 2, ...; i = 1, ..., p

and

λ = λ1 ∗ ... ∗ λp ∗ δ (y0) , (2.2)

λ = (c1...cn) .
(
λ

s(1,n)
1 ∗ ... ∗ λs(p,n)

p

)
∗ δ (yn) ,

with s(i, n) = t(i, 1)...t(i, n), n = 1, 2, ...; i = 1, ..., p.

Conversely, if (2.2) holds and

s(i, n) → ∞ as n → ∞ , i = 1, ..., p , (2.3)

then (2.1) is true.

The above theorem partially solves the problem of characterizing the limit

distributions of partial summation schemes. In the following theorem, the problem

is concerned with a special case, when in (2.1) µ1, ..., µp belong to domains of semi-

attraction of some semistable probability measures:

Theorem 2. Let sequences (an), (xn), (k(1, n)), ..., (k(p, n)) , a measure λ and a num-

ber c > 0 be given. Suppose that (2.1) holds and there exist positive numbers s(i) < 1

102



THE PROBLEM OF B. V. GNEDENKO FOR PARTIAL SUMMATION SCHEMES ON BANACH SPACE

and semistable measures νi, i = 1, ..., p , such that µi belongs to the domain of

s(i)−semi-attraction of ν , i. e.

bi(n) . µ
∗m(i,n)
i ∗ δ (xi(n)) ⇒ νi as n → ∞ (2.4)

for some (bi(n)) , (xi(n)) and

m(i, n)/m(i, n + 1) → s(i) as n → ∞ . (2.5)

Then there exist positive numbers bi , t(i) ∈ [s(i), 1] , i = 1, ..., p and an element

x0 such that

λ = b1 . ν
t(1)
1 ∗ ... ∗ bp .nut(p)

p ∗ δ (x0) . (2.6)

This theorem giving a condition for the limit measure λ in (2.1) to be a

convolution of semistable measures has been proved on the real line by Chibisova

(Theorem 2 [2]) with the additional condition (1.2′). The next theorem is devoted to

investigate another condition for this.

Theorem 3. Suppose that (2.1) holds and

an+1/ an → a (2.7)

k(i, n + 1)/k(i, n) → t(i) as n → ∞ , i = 1, ..., p , (2.8)

for some positive number a and t(1), ..., t(p) such that

t(1) < t(2) < ... < t(p) . (2.9)

Then there exist semistable measures λi , i = 1, ..., p , and yo such that

λ = λ1 ∗ ... ∗ λp ∗ δ (y0) . (2.10)

Moreover, there exist sequences (zi(n)) , i = 1, ... , p such that

an.µ
∗k(i,n)
i ∗ δ (zi(n)) ⇒ λi , (2.11)

i. e. µi belongs to the domain of semi-attraction of λi, i = 1, ..., p.

Theorem 4. If (2.1) , (2.7) and (2.8) hold then there exists a natural number q such

that λ is a convolution of q semistable measures.
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3. Lemmas and proofs

First we introduce a lemma which will play a crucial role in the following

development.

Lemma 1. Let µ be nondegenerated, λn, n = 1, 2, ..., and (xn), (k(n)), (m(n)) be

given. Suppose that

λk(n)
n ∗ δ (xn) ⇒ µ (3.1)

and

m(n)/k(n) → t ≥ 0 . (3.2)

Then µ ∈ ID(E) and there exists a sequence (yn) such that

λ∗m(n)
n ∗ δ (yn) ⇒ µt.

Proof. From (3.1) we can see that if P is any finite-dimensional linear

projector of the space E then

(Pλn)∗k(n) ∗ δ (Pxn) ⇒ Pµ.

Thus, by the classical argument on finite-dimensional spaces, we infer that Pµ is

infinitely divisible, consequently µ ∈ ID(E) in view of Corollary 1 [8, p.320]. Now,

from (3.2) we can choose a natural number N such that m(n) < N.k(n) for all n.

Then (3.1) yields

λ∗Nk(n)
n ∗ δ (Nxn) ⇒ µ∗N .

On the other hand,

λ∗Nk(n)
n = λ∗m(n)

n ∗ λ∗(Nk(n)−m(n))
n .

Hence, by virtue of Theorem III.2.2 [6], there exists a sequence (zn) such that the

sequence (
λ∗m(n)

n ∗ δ (zn)
)

(3.3)

is compact. Meanwhile, for every y, ∈ E
′
, (3.1) and (3.2) imply

(y,λn)∗m(n) ∗ δ (< y,, (m(n)/k(n)).xn >) ⇒ (y,µ)t.
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Then, by the Convergence of Type Theorem, if ν is any cluster point of the sequence

(3.3) then

(y,ν = (y,ν)t ∗ δ (xy,)

for some real xy, . Thus, it follows from Corollary 1 of Lemma 2 [7] the existence of

x(ν) ∈ E such that < y,, x(ν) >= xy, for all y, ∈ E
′
and ν = µt ∗ δ(x(ν)). The set

Γ = {x(ν) : ν is a cluster point of (3.3)}

is a compact set provided the compactness of (3.3). Let ρ denote the Levy-Prokhorov

metric on P (E). For every n we define zn(0) by

ρ
(
λ
∗m(n)
n ∗ δ (zn) , µt ∗ δ (zn(0))

)
=

= min
x∈Γ

ρ
(
λ∗m(n)

n ∗ δ (zn) , µt ∗ δ(x)
)

Then, it is evident that

ρ
(
λ∗m(n)

n ∗ δ (zn − zn(0)) , µt
)
→ 0

which implies

λ∗m(n)
n ∗ δ (yn) ⇒ µt

with yn = zn − zn(0) , i. e. the conclusion of the lemma is true.

Proof of Theorem 1. We invoke Theorem III.5.1 [6] and (2.1) to deduce

that there exist sequences (yi(n)), i = 1, ..., p , such that the sequences(
an.µ

∗k(i,n)
i ∗ δ (yi(n))

)
, i = 1, ..., p (3.4)

are compact. Then from (1.2′) there are a subsequence (n′) , numbers t(i, 1) and

measures λi, νi ∈ ID(E), i = 1, ..., p , such that t(i, 1) ≥ 1/c and

k(i, n′ + 1)/k(i, n′) → t(i, 1) (3.5)

an′ .µ
∗k(i,n′)
i ∗ δ (yi(n′)) ⇒ λi (3.6)

an′+1.µ
∗k(i,n′+1)
i ∗ δ (yi(n′ + 1)) ⇒ νi (3.7)

for n′ →∞ and i = 1, ..., p . Consequently, (2.1) yields

λ = λ1 ∗ ... ∗ λp ∗ δ (y0) (3.8)
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λ = ν1 ∗ ... ∗ νp ∗ δ (z0) .

Moreover, in view of Theorem 1 [4] and Lemma 1, the conditions (3.5) through (3.7)

imply

νi = c1.λ
t(i,1)
i ∗ δ (zi) , i = 1, ..., p,

for some positive c1 and elements zi, i = 1, ..., p. Hence

λ = c1.
(
λ

t(1,1)
1 ∗ ... ∗ λt(p,1)

p

)
∗ δ (y1) ,

with y1 = z0 + z1 + ... + zp.

Further, from the compactness of the sequence (3.4), we can pick from (n′)

another subsequence (n′′) such that for some t(i, 2) ≥ 1/c and κi ∈ ID(E), i =

1, ..., p , we have

k(i, n′′ + 2)/k(i, n′′ + 1) → t(i, 2),

an′′+2.µ
∗k(i,n′′+2)
i ∗ δ (yi(n′′ + 2)) ⇒ κi

as n′′ →∞. Then repeating the above argument we can see that

λ = (c1.c2) .
(
λ

t(1,1).t(1,2)
1 ∗ ... ∗ λt(p,1).t(p,2)

p

)
∗ δ (y2) ,

with c2 > 0 and y2 ∈ E.

The continuation of the above process arrives at the conclusion that for each

n

λ = (c1...cn) .
(
λ

s(1,n)
1 ∗ ... ∗ λs(p,n)

p

)
∗ δ (yn) ,

with s(i, n) = t(i, 1)...t(i, n), t(i, j) ≥ 1/c, cj > 0, j = 1, ..., n; i = 1, ..., p , which

together with (3.8) implies (2.2).

Conversely, let (2.2) and (2.3) hold. Then it follows from Theorem III.5.1 [6]

the existence of the sequences (zi(n)), i = 1, ..., p , such that sequences (γi(n)), i =

1, ..., p , are compact, where

γi(n) = bn.λ
s(i,n)
i ∗ δ (zi(n)) , n = 1, 2, ...

and bn = c1...cn.
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Let (n′) be any subsequence of natural numbers. Since λ is nondegenerated

and

λ = γ1(n′) ∗ ... ∗ γp(n′) ∗ δ (yn′ − z1(n′)− ...− zp(n′)) ,

at least one of the subsequences (γi(n′)), i = 1, ..., p , say (γ1(n′)) , has a nondegen-

erated clust point γ1 , i. e.

bn′′ .λ
s(1,n′′

1 ∗ δ (z1(n′′)) ⇒ γ1 as n′′ →∞

for some subsequence (n′′) of (n′). Hence there exists an element y, ∈ E
′

such that

y,γ1 is nondegenerated and

bn′′ .y
,λ

s(1,n′′

1 ∗ δ (〈y,, z1(n′′)〉) ⇒ y,γ1 .

Consequently, since s(1, n′′) → ∞ as n′′ → ∞ , we see that bn′′ → 0 as n′′ → ∞ .

In conclusion, every subsequence (bn′) of (bn′′) contains another subsequence tending

to zero, this means bn → 0 as n →∞. Then, because for each index i = 1, ..., p the

set {(λi)s : 0 ≤ s ≤ 1} is compact (see Theorem 5[3]), it is plain that

bn.λ
s(i,n)−[s(i,n)]
i ⇒ δ(0) as n →∞,

where [s] denotes the integer part of a number s. This implies by virtue of (2.2) that

bn.
(
λ

[s(1,n)]
1 ∗ ... ∗ λ

[s(p,n)]
1

)
∗ δ (yn) ⇒ λ,

which yields (2.1) with µi = λi , xn = yn, ki(n) = [s(i, n)], i = 1, ..., p; n = 1, 2, ....

The proof is just complete.

Proof of Theorem 2. By the same reason as in Theorem 1, there exist

sequences (yi(n)), i = 1, ..., p such that the sequences (3.4) are compact. Then we

can find a subsequence (n′) of natural numbers and measure λi ∈ ID(E), i = 1, ..., p

, such that

an′ .µ
∗k(i,n′)
i ∗ δ (yi(n′)) ⇒ λi , i = 1, ..., p . (3.9)

Let’s fix an index i. Then, without loss of generality, we can suppose that

m(i, n′) ≤ k(i, n′) < m(i, n′ + 1).
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Thus from (2.5) it is clear that the set

k(i, n′)/m(i, n′ + 1) : n′ ∈ (n′)

is compact and we can suppose once more that

k(i, n′)/m(i, n′ + 1) → t(i) as n′ →∞ (3.10)

for some t(i) ∈ [s(i), 1]. Therefore, taking Theorem 1 [4] and Lemma 1 into account,

by virtue of (2.4), (3.9) and (3.10), we infer that an′/bi(n′ + 1) → bi and

λi = bi.ν
t(i)
i ∗ δ (yi) ,

for some bi > 0, yi ∈ E. Hence the theorem is proved in view of (2.1) and (3.9). For

the proof of Theorem 3 we need the following lemma:

Lemma 2. Let µ ∈ ID(E), λ ∈ ID(E), (xn), (t(n)) and (an) be given. Suppose

that

an.λt(n) ∗ δ (xn) ⇒ µ (3.11)

and

t(n)/t(n + 1) → t > 0 . (3.12)

Then there exist a > 0 and x such that

µt = a.µ ∗ δ(x) , (3.13)

i. e. m is semistable.

Proof. From (3.11) and (3.12), by an argument analogous to that used for

the proof of Lemma 1, we can infer that

an.λt(n+1) ∗ δ (yn) ⇒ µ1/t

for some sequence (yn). Meantime,

an+1.λ
t(n+1) ∗ δ (yn+1) ⇒ µ.

Thus, (3.13) follows from Theorem 1 [4] with a = limn→∞(an+1/an).
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Proof of Theorem 3. It is evident that (1.2’) is true in view of (2.9).

Hence, by the same argument as in the proof of Theorem 1, we can see that

λ = λ1 ∗ ... ∗ λp ∗ δ (y0) , (3.14)

λ = (an) .
(
λ

t(1)n

1 ∗ ... ∗ λt(p)n

p

)
∗ δ (yn) .

Then

a−n.λt(p)−n

∗ δ
(
(a.t(p))−n.yn

)
= λ

(t(1)/t(p))n

1 ∗ ... ∗ λ(t(p−1)/t(p))n

p ∗ λp.

Meanwhile, since for i = 1, ..., p− 1 we have t(i)/t(p) < 1, Theorem 5 [3] yields

λ
(t(i)/t(p))n

i ⇒ δ(0).

Hence

a−n.λt(p)−n

∗ δ
(
(a.t(p))−n.yn

)
⇒ λp . (3.15)

Therefore, it follows from Lemma 2 that λp is semistable. As we have seen in the

proof of Theorem 1, there exists a sequence (yp(n)) such that the sequence(
an.µ∗k(p,n)

p ∗ δ (yp(n))
)

(3.16)

is compact. Let νp be any clust point of the sequence (3.16). Then repeating the

argument of the proof of Theorem 1 and the above part we can conclude that

a−n.λt(p)−n

∗ δ (xp(n)) ⇒ νp

for some sequence (xp(n)). This together with (3.15) and Theorem 1 [4] implies the

existence of an element z(νp) ∈ E such that

νp = λp ∗ δ(z(νp)).

Hence, by the same reason used in the proof of Lemma 1 and the compactness of the

sequence (3.16) we obtain

an.µ∗k(p,n)
p ∗ δ (zp(n)) ⇒ λp (3.17)
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for some sequence (zp(n)), i. e. (2.11) holds for i = p. Now, (2.1) and (3.17) imply

the shift convergence of the sequence(
an.

(
µ
∗k(1,n)
1 ∗ ... ∗ µ

∗k(p−1,n)
p−1

))
and by the same way as the above we get the semistability of λp−1 and (2.11) for

i = p− 1. The proof is complete after the p times repeated application of the above

argument.

Proof of the Theorem 4. As in the proof of Theorem 3 we see that (3.14)

hold. Then by a renumeration if necessary, we can suppose that

t(1) ≤ t(2) ≤ ... ≤ t(p) .

Let’s set

r(1) = t(j(1)), ν1 = λ1 ∗ ... ∗ λj(1)

if t(1) = ... = t(j(1)) < t(j(1) + 1) ,

r(2) = t(j(2)), ν2 = λj(1)+1 ∗ ... ∗ λj(2)

if t(j(1) + 1) = t(j(1) + 2) = ... = t(j(2)) < t(j(2) + 1),

. . . . .

r(q) = t(p), νq = λj(q−1)+1 ∗ ... ∗ λp

Then it follows straightly from (3.14) that

q ≤ p, r(1) < r(2) < ... < r(q)

and

λ = ν1 ∗ ... ∗ νq ∗ δ (y0) ,

λ = an.
(
ν

r(1)n

1 ∗ ... ∗ νr(q)n

q

)
∗ δ (yn) .

Hence, arguing as in the proof of Theorem 3, we get the conclusion of the theorem.
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