STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLIX, Number 1, March 2004

A NEW CONVEXITY CRITERION

RÓBERT SZÁSZ

Abstract. In this paper we have obtained a simple sufficient condition for the convexity of analytic functions defined in the unit disc $U = \{z \in C : |z| < 1\}$.

1. Introduction

Let A be the class of functions which are analytic in the unit disc $U = \{z \in \mathbb{C} \mid |z| < 1\}$ and has the form $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$. The analytic function f is said to be in the class \mathcal{P} , if and only if f(0) = 1 and $\operatorname{Re} f(z) > 0, \forall z \in U$. If f and g are analytic in the unit disc U, we say that f

Re f(z) > 0, $\forall z \in U$. If f and g are analytic in the unit disc U, we say that f is subordinate to g in U if there exist a function Φ analytic in U, so that $\Phi(0) = 0$, $|\Phi(z)| < 1$, and $f(z) = g(\Phi(z))$ for all $z \in U$. The subordination shall be denoted by $f \prec g$. If g is univalent, then f is subordinated to g if and only if f(0) = g(0) and $f(U) \subset g(U)$.

We say that the analytic function f is convex in U if it is univalent and f(U) is a convex domain in \mathbb{C} . It is well known that a function f is convex if and only if $f'(0) \neq 0$ and $Re\left(1 + \frac{z f''(z)}{f'(z)}\right) > 0$, for all $z \in U$. Let K denote the subset of A consisting of convex functions. In order to show our main result, we need the following lemmas.

Lemma 1. (Herglotz) [1]

A function f belongs to \mathcal{P} if and only if there is a measure μ on $[0, 2\pi]$ so that

$$f(z) = \int_0^{2\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} \, \mathrm{d}\mu(t) \quad and \quad \mu\left([0, 2\pi]\right) = 1 \; .$$

Lemma 2. (H.S. Wilf)[4]If $Re\left(\frac{1}{2} + \sum_{n=1}^{\infty} b_n z^n\right) > 0, \forall z \in U$ and $f(z) = \sum_{n=1}^{\infty} a_n z^n$ is a convex function, then $\sum_{n=1}^{\infty} a_n b_n z^n \prec f(z)$.

Received by the editors: 03.12.2002.

RÓBERT SZÁSZ

2. Main result

Theorem 1. If $f \in A$ and $Re\left(zf''(z) + \frac{z^2}{2}f'''(z)\right) > \frac{-1}{\pi + 4\ln 2}$ for $z \in U$ then $f \in K$.

Proof. If $f \in A$ then it has the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. The condition $Re\left(zf''(z) + \frac{z^2}{2}f'''(z)\right) >$ $> \frac{-1}{\pi + 4 \ln 2} = -c$ is equivalent with $1 + \frac{1}{c} \left(z f''(z) + \frac{z^2}{2} f'''(z) \right) \in \mathcal{P}$ and using the

$$1 + \frac{1}{2c} \sum_{n=2}^{\infty} n^2 (n-1) a_n z^{n-1} = 1 + 2 \sum_{n=2}^{\infty} z^{n-1} \int_0^{2\pi} e^{-it(n-1)} \, \mathrm{d}\mu(t) d\mu(t) d\mu(t) = 0$$

From the last equality we deduce that:

Lemma 1 we obtain the following representation:

$$a_n = \frac{4c}{n^2(n-1)} \int_0^{2\pi} e^{-it(n-1)} \, \mathrm{d}\mu(t)$$

and

$$f(z) = z + 4c \sum_{n=2}^{\infty} \frac{z^n}{n^2(n-1)} \int_0^{2\pi} e^{-it(n-1)} \, \mathrm{d}\mu(t)$$

After a simple calculation we get that

$$1 + \frac{zf''(z)}{f'(z)} = \frac{\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n-1} \int_{0}^{2\pi} e^{-it(n-1)} \,\mathrm{d}\mu(t)}{\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n(n-1)} \int_{0}^{2\pi} e^{-it(n-1)} \,\mathrm{d}\mu(t)}$$

We introduce the notations $h(z) = \frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n-1}$ and $g(z) = \frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n(n-1)}$. It is easy to observe that $h(z) = \frac{1}{4c} + \log \frac{1}{1-z}$ and h is a convex function. Because $Re\left(\frac{1}{2} + \sum_{n=1}^{\infty} \frac{z^n}{n+1}\right) > 0, \forall z \in U$ and h is convex using Lemma 2 it follows that $g(z) \prec h(z)$. The convexity of h implies

$$\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n(n-1)} \int_0^{2\pi} e^{-it(n-1)} \, \mathrm{d}\mu(t) \in h(U), \tag{1}$$

102

A NEW CONVEXITY CRITERION

$$\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n-1} \int_0^{2\pi} e^{-it(n-1)} \,\mathrm{d}\mu(t) \in h(U) \tag{2}$$

for every $z \in U$ and every measure μ for which $\mu([0, 2\pi]) = 1$. If $0 < c < \frac{1}{4}$ then $Re \ h(z) > 0, z \in U$ and we can draw two tangent lines to the curve $\Gamma = \partial h(U)$. Let denote with α the measure of the angle between the two tangent lines which contains h(U). From(1) and (2) follows that

$$|\arg \frac{\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n-1} \int_{0}^{2\pi} e^{-it(n-1)} d\mu(t)}{\frac{1}{4c} + \sum_{n=2}^{\infty} \frac{z^{n-1}}{n(n-1)} \int_{0}^{2\pi} e^{-it(n-1)} d\mu(t)} | < \alpha$$

and so a sufficient condition for $Re\left(1+\frac{zf''(z)}{f'(z)}\right) > 0$, $z \in U$ is $\alpha = \frac{\pi}{2}$. The curve Γ has the $h(e^{i\theta}) = u(\theta) + iv(\theta)$, $\theta \in (0, 2\pi)$ parametric representation. The equality $\alpha = \frac{\pi}{2}$ is equivalent with the existence of $\theta_1, \theta_2 \in [0, 2\pi]$ with the properties

$$\frac{u(\theta_1)}{u'(\theta_1)} = \frac{v(\theta_1)}{v'(\theta_1)} , \ \frac{u(\theta_2)}{u'(\theta_2)} = \frac{v(\theta_2)}{v'(\theta_2)} , \ \frac{v'(\theta_1)}{u'(\theta_1)} \cdot \frac{v'(\theta_2)}{u'(\theta_2)} = -1$$

Because h(U) is symmetric with respect to the real axis, we deduce that $\theta_2 = 2\pi - \theta_1$ and after calculation we get $c = \frac{1}{\pi + 2 \ln 2}$.

Example. Let λ be a real number so that $0 < \lambda < \frac{e-1}{e(\pi+2\ln 2)}$ then the function $f(z) = z + \lambda \int_0^z \int_0^t \frac{1}{u^2} \int_0^u \frac{s^2}{e^s - 1} \, \mathrm{d}s \, \mathrm{d}u \, \mathrm{d}t \text{ belongs to } K.$

Proof. After derivation we get that: $zf''(z) + \frac{z^2}{2}f'''(z) = \lambda \frac{z^2}{e^z - 1}, z \in U$. In [1] had been proved that $q(z) = \frac{e^z - 1}{z}$ is a convex function in U which implies the inequality:

$$Re \ q(z) > \frac{e-1}{e} \ , \ z \in U.$$
⁽²⁾

From (2) follows that $|q(z)| > \frac{e-1}{e}, z \in U$ or equivalently

$$\left|\frac{z}{e^z - 1}\right| < \frac{e}{e - 1} , \ z \in U.$$

$$(3)$$

Using (3) it is easy to deduce that

$$Re\left(zf''(z) + \frac{z^2}{2}f'''(z)\right) = \lambda \ Re\frac{z^2}{e^z - 1} > \lambda \frac{-e}{e - 1} = \frac{-1}{\pi + 2\ln 2}, \ z \in U$$

is the condition of Theorem 1.

which is the condition of Theorem

103

RÓBERT SZÁSZ

References

- D. J. Hallenbeck, T. H. MacGregor, *Linear problems and convexity techniques in geometric function theory*, Pitman Advanced Publishing Program, 1984.
- [2] P. T. Mocanu, On certain subclasses of starlike functions, Studia Univ.Babeş-Bolyai, Math. 34, 4(1994) 3-9.
- [3] I. Şerb, The radius of convexity and starlikeness of a particular function, Mathematica Montisnigri vol. VII(1996), 65-69.
- [4] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12(1961), 689-693.

BOLYAI FARKAS HIGH SCHOOL TG. MUREŞ *E-mail address*: lrobert@bolyai.ro