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ON A CLASS OF GENERALIZED GAUSS-CHRISTOFFEL
QUADRATURE FORMULAE

D. D. STANCU, IOANA TASCU, AND ALINA BEIAN-PUTURA

Abstract. We consider Gauss-Christoffel-Stancu quadrature rules, over
the interval [−1, 1], using m Gaussian nodes and s preassigned multiples
nodes, so that the node polynomial of these fixed nodes does not change
sign in (−1, 1). The Gaussian nodes xk of formula (2) are determined so
that the degree of exactness of this quadrature formula to be the highest
possible. These can be found either by means of the formula (10) or
by determining the minimum of the function F of m variables (11). We
give explicit formulae for the coefficients and for the remainders. Several
illustrative examples are presented for certain preassigned multiple nodes.

1. In a memoir published by E. B. Christoffel in 1858 [1] has been considered
a generalization of the classical Gauss quadrature formula, by introducing certain
preassigned simple nodes situated outside the integration interval (−1, 1).

This formula has the following form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
n∑

j=1

Bjf(bj) + R(f), (1)

where bj are preassigned nodes (the fixed nodes), not situated in the interval (−1, 1), f
is an integrable function on this interval and R(f) is the remainder of this quadrature
formula. The free nodes xk are selected so that formula (1) has the highest degree of
exactness. We will call xk the fundamental or the Gaussian nodes.

2. In 1957 D. D. Stancu [4] has introduced and investigated a quadrature
formula using multiple fixed nodes ai and simple Gaussian nodes xk.

It has the form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f). (2)

Let us denote by u(x) the node polynomial of the free nodes xk and by ω(x)
the node polynomial of the fixed nodes, that is

u(x) = (x− x1)(x− x2) . . . (x− xm), (3)

ω(x) = (x− a1)r1(x− a2)r2 . . . (x− as)rs . (4)
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We assume that ri are natural numbers so that we have ω(x) = 0 on the
integration interval (−1, 1).

Given the fixed nodes ai and their multiplicities ri, the problem is then to
determine the simple nodes xk and the coefficients Ak and Ci,j so that formula (2)
has the highest degree of exactness.

In order to find the Gaussian nodes xk we shall start from the Lagrange-
Hermite interpolation formula using the simple nodes xk, the multiple nodes ai and
other nondetermined simple nodes t1, t2, . . . , tm, distinct from the other nodes. It has
the form

f(x) = (H2m+p−1f)(x) + (R2m+p−1f)(x), (5)
where we use as nodes the roots of the polynomial P (x) = u(x)ω(x)v(x), u and ω
being defined at (3) and (4), while

v(x) = (x− t1)(x− t2) . . . (x− tm), p = r1 + r2 + · · ·+ rs.

The interpolation polynomial H2m+p−1 has the following expression (see [4]):

(H2m+p−1f)(x) =
m∑

k=1

uk(x)
uk(xk)

· v(x)
v(xk)

· ω(x)
ω(xk)

f(xk)+

+
m∑

h=1

u(x)
u(th)

· vh(x)
vh(th)

· ω(x)
ω(th)

f(th)+

+
s∑

i=1

ri−1∑
j=0

ri−j−1∑
ν=0

(x− ai)j

j!

[
(x− ai)ν

ν!

(
1

ωi(x)

)(ν)

ai

]
ωi(x)f (j)(ai),

where

uk(x) = u(x)/(x− xk), vh(x) = v(x)/(x− th), ωi(x) = ω(x)/(x− ai)ri .

3. By integrating the preceding interpolation formula we obtain a quadrature
formula of the following form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
m∑

h=1

Bhf(th) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f), (6)

where

Ak =
∫ 1

−1

uk(x)
uk(xk)

· v(x)
v(xk)

· ω(x)
ω(xk)

dx, (7)

Bh =
∫ 1

−1

u(x)
u(th)

· vh(x)
vh(th)

· ω(x)
ω(th)

dx, (8)

Ci,j =
ri−j−1∑

ν=0

∫ 1

−1

(x− ai)j

j!

[
(x− ai)ν

ν!

(
1

ωi(x)

)(ν)

ai

]
ωi(x)dx, (9)

R(f) =
∫ 1

−1

u(x)v(x)ω(x)
[
x,

xk

1 ,
th
1 ,

ai

ri
; f
]

dx.

The brackets used in this remainder represent the symbol for divided differ-
ences.
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4. Now we want to determine the nodes xk so that we have Bh = 0 (h =
1, 2, . . . ,m) for any values of the parameters t1, t2, . . . , tm. It is easy to see that this
is equivalent with the condition that the polynomial u(x) is orthogonal on (−1, 1),
with respect to the weight function ω(x), with any polynomial of degree m− 1, since
t1, t2, . . . , tm are arbitrary numbers.

But it is known [4] that we must have

Um(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lm(x) Lm+1(x) . . . Lm+p(x)
Lm(a1) Lm+1(a1) . . . Lm+p(a1)
L′

m(a1) L′
m(a1) . . . L′

m+p(a1)
. . . . . . . . . . . .

L
(r1−1)
m (a1) L

(r1−1)
m+1 (a1) . . . L

(r1−1)
m+p (a1)

Lm(a2) Lm+1(a2) . . . Lm+p(a2)
. . . . . . . . . . . .

Lm(as) Lm+1(as) . . . Lm+p(as)
L′

m(as) L′
m+1(as) . . . L′

m+p(as)
. . . . . . . . . . . .

L
(rs−1)
m (as) L

(rs−1)
m+1 (as) . . . L

(rs−1)
m+p (as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

: ω(x), (10)

where by Ln we denote the Legendre polynomial of degree n:

Ln(x) = (2n · n!)−1[(x2 − 1)n](n) and u(x) = Ũm(x).

If we take into consideration the formula (8) for the coefficient Bh, we can
see that in order to have B1 = · · · = Bm = 0 it is necessary and sufficient that∫ 1

−1

ω(x)u(x)g(x)dx = 0,

where g(x) is any polynomial of degree m− 1.
But it is known [4] that in this case the node polynomial u(x) can be found

by means of the formula (10).
We make the remark that the nodes xk can be found also by determining the

minimum of the following function of m variables

F (u1, . . . , um) =
∫ 1

−1

ω(x)(x− u1)2 . . . (x− um)2dx. (11)

5. Because t1, t2, . . . , tm are arbitrary numbers, we can make tk → xk (k =
1, 2, . . . ,m).

In this case we arrive at the following quadrature formula of Gauss-Christoffel-
Stancu type ∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f), (12)

where

Ak =
∫ 1

−1

(
uk(x)
uk(xk)

)2
ω(x)
ω(xk)

dx
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and

R(f) =
∫ 1

−1

ω(x)u2(x)
[
x,

xk

2 ,
ai

ri
; f
]

dx, k = 1,m; i = 1, s.

One observes that all the coefficients Ak are positive.
Assuming that f ∈ C2m+p(−1, 1), by using the mean-value theorem of di-

vided differences we can give the following representation of the remainder

R(f) =
f (2m+p)(ξ)
(2m + p)!

∫ 1

−1

ω(x)u2(x)dx, ξ ∈ (−1, 1). (13)

6. Now we make the remark that if the polynomial of the fixed nodes:
±a1,±a2, . . . ,±as (2s = r) is even, then we can obtain the following equation for
determining the Gaussian nodes xk:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lm(x) Lm+2(x) . . . Lm+r(x)
Lm(a1) Lm+2(a1) . . . Lm+r(a1)
L′

m(a1) L′
m+2(a1) . . . L′

m+r(a1)
. . . . . . . . . . . .

L
(r1−1)
m (a1) L

(r1−1)
m+2 (a1) . . . L

(r1−1)
m+r (a1)

Lm(a2) Lm+2(a2) . . . Lm+r(a2)
. . . . . . . . . . . .

Lm(as) Lm+2(as) . . . Lm+r(as)
L′

m(as) L′
m+2(as) . . . L′

m+r(as)
. . . . . . . . . . . .

L
(rs−1)
m (as) L

(rs−1)
m+2 (as) . . . L

(rs−1)
m+r (as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (14)

where by Ln(x) we denote again the Legendre orthogonal polynomial of degree n.
7. If we normalize the orthogonal polynomial given at (10), then we obtain

Û(x) =
1

γm

√
(−1)pβm

βm+pGmGm+1
· Um(x),

where γm is the coefficient of xm from the Legendre polynomial Lm(x), that is

γm =
∫ 1

−1

L2
m(x)dx =

2
2m + 1
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and by Gk we denote the following determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lk(a1) Lk+1(a1) . . . Lk+p−1(a1)
L′

k(a1) L′
k+1(a1) . . . L′

k+p−1(a1)
. . . . . . . . . . . .

L
(r1−1)
k (a1) L

(r1−1)
k+1 (a1) . . . L

(r1−1)
k+p−1(a1)

Lk(a2) Lk+1(a2) . . . Lk+p−1(a2)
L′

k(a2) L′
k+1(a2) . . . L′

k+p−1(as)
. . . . . . . . . . . .

Lk(as) Lk+1(as) . . . Lk+p−1(as)
. . . . . . . . . . . .

L
(rs−1)
k (as) L

(rs−1)
k+1 (as) . . . L

(rs−1)
k+p−1(as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By using the known Christoffel-Darboux formula from the theory of orthogo-
nal polynomials, we can obtain for the coefficients Ak of the quadrature formula (12)
the expressions

Ak =
∫ 1

−1

Ûm(t)ω(t)dt

(t− xk)Û ′
m(xk)ω(xk)

=
1

√
λm ω(xk)Û ′

m(xk)Ûm−1(xk)
.

8. In order to present some illustrations we consider that the fixed nodes are:
a1 = −1, a2 = 1, having different orders of multiplicities.

If the polynomial of the fixed nodes is ω(x) = (1 + x)(1 − x)2, then the
Gaussian nodes can be found by solving the equation∣∣∣∣∣∣∣∣

Lm(x) Lm+1(x) Lm+2(x) Lm+3(x)
Lm(−1) Lm+1(−1) Lm+2(−1) Lm+3(−1)
Lm(1) Lm+1(1) Lm+2(1) Lm+3(1)
L′

m(1) L′
m+1(1) L′

m+2(1) L′
m+3(1)

∣∣∣∣∣∣∣∣ = 0.

It leads to the solution of the equation

(2m + 5)[Lm(x)− Lm+2(x)]− (2m + 3)[Lm+1(x)− Lm+3(x)] = 0,

eliminating the roots of the polynomial ω(x).

If we take m = 1 we find the Gaussian node x1 = −1
5

and the quadrature
formula of degree of exactness four∫ 1

−1

f(x)dx =
1

108

[
27f(−1) + 125f

(
−1

5

)
+ 64f(1)− 12f ′(1)

]
+

2
1125

f (5)(ξ),

given first in [4].
For m = 2 we get the Gaussian nodes

x1 = −2
√

2 + 1
7

, x2 =
2
√

2− 1
7

.

By using these nodes and the fixed nodes a1 = −1 (simple) and a2 = 1
(double), we can obtain a quadrature formula of degree of exactness six.
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If we now consider that ω(x) = (1 − x2)2 then the Gaussian nodes and the
fixed nodes are the roots of the equation

(2m + 7)Lm(x) + (2m + 3)Lm+1(x)− 2(2m + 5)Lm+2(x) = 0.

In the case m = 3 we obtain a quadrature formula of degree of exactness
nine, namely∫ 1

−1

f(x)dx =
1

105

[
19f(−1) + f ′(−1) + 54f

(
− 1√

3

)
+ 64f(0)+

+54f

(
1√
3

)
− f ′(1) + 19f(1)

]
+

1
589396500

f (10)(ξ).

Considering also the case ω(x) = (1−x2)3, formula (10) leads to the solution
of the equation

(2m + 7)(2m + 9)(2m + 11)Lm(x)− 3(2m + 5)(2m + 7)(2m + 11)Lm+2(x)+

+3(2m + 3)(2m + 7)(2m + 9)Lm+4(x)− (2m + 3)(2m + 5)(2m + 7)Lm+6(x) = 0.

In the case m = 2 we obtain the following quadrature formula of degree of
exactness nine∫ 1

−1

f(x)dx =
1

3360

[
1173f(−1) + 156f ′(−1) + 8f ′′(−1) + 2187f

(
−1

3

)
+

+2187f

(
1
3

)
+ 8f ′′(1)− 156f ′(1) + 1173f(1)

]
− 2

442047375
f (10)(ξ).

For m = 3 we get the Gaussian nodes

x1 = −
√

3
11

, x2 = 0, x3 =

√
3
11

and a Gauss-Christoffel quadrature formula of degree of exactness eleven.
9. Considering that we have an arbitrary real fixed node a, of multiplicity

2s, we arrive at a quadrature formula of the form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
2s−1∑
h=0

Bhf (h)(a) + R(f),

where the remainder has the expression

R(f) =
f (2m+2s)(ξ)
(2m + 2s)!

∫ 1

−1

(x− a)2sÛ2
m(x)dx.

The Gaussian nodes can be found by solving the equation∣∣∣∣∣∣∣∣∣∣
Lm(x) Lm+1(x) . . . Lm+2s(x)
Lm(a) Lm+1(a) . . . Lm+2s(a)
L′

m(a) L′
m+1(a) . . . L′

m+2s(a)
. . . . . . . . . . . .

L
(2s−1)
m (a) L

(2s−1)
m+1 (a) . . . L

(2s−1)
m+2s (a)

∣∣∣∣∣∣∣∣∣∣
= 0,

omitting the root a of multiplicity 2s.
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In the case when ω(x) = x2 and we take m = 5 we find the Gaussian nodes

−x1 = x4 =

√
21 + 2

√
14

33
, −x2 = x3 =

√
21− 2

√
14

33
and we are able to obtain a quadrature formula having the degree of exactness eleven,
namely ∫ 1

−1

f(x)dx =
1

514500
{440832f(0) + 8960f ′′(0)+

+27(5446− 537
√

14)[f(x1) + f(x4)] + 27(5446 + 537
√

14)[f(x2) + f(x3)]}+

+
1

476804928600
f (12)(ξ).

Considering also the case ω(x) = x4 and m = 3 we get the Gaussian nodes

x1 = −
√

7
3

, x2 = 0, x3 =
√

7
3

and the following quadrature formula∫ 1

−1

f(x)dx =
1

36015

{
50160f(0) + 3500f ′′(0) + 10935

[
f

(
−
√

7
3

)
+ f

(√
7

3

)]}
+

+
1

404157600
f (10)(ξ).

Ending this paper we mention that D. D. Stancu and A. H. Stroud have tabu-
lated the values of the nodes, the coefficients and the remainders, with 20 significant
digits, in the paper [6].
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